История создания микроскопа и его устройство

Строение светового микроскопа

Чтобы ознакомиться со строением клетки и рассмотреть её составные части, нужно использовать увеличительное оборудование, одним из которых является световой микроскоп.

Первые микроскопы были похожи на увеличительные стёкла, и в них использовалось только одно стекло или линза из полированного горного хрусталя.

Одним из первых создателей (1610 г.) микроскопа считают физика и математика Галилео Галилея.

Большие технические возможности и лучшее качество изображения можно получить при помощи микроскопа с двумя линзами. Создание такого прибора связано с именем английского физика Роберта Гука (1665 г.). Этот микроскоп увеличивал в 30 раз.

Для своего времени превосходного мастерства в изготовлении микроскопов достиг нидерландский купец Антони ван Левенгук ( 1632 – 1723 ). Он умел производить линзы, увеличивающие в 200 – 270 раз

Линзы закреплялись на специальном штативе, так как, чтобы достичь такого увеличения, важно, чтобы исследуемый объект находился точно напротив линзы и на определённом расстоянии от неё. За свою жизнь Левенгук изготовил более 200 микроскопов

Световая микроскопия

В основе световой микроскопии лежат различные свойства света. Световая микроскопия обеспечивает увеличение до 2-3 тысяч раз, цветное и подвижное изображение живого объекта, возможность микрокиносъемки и длительного наблюдения одного и того же объекта, оценку его динамики и химизма.

Современные световые микроскопы представляют собой довольно сложные приборы, совершенствующиеся в течение 400 лет с момента создания первого прототипа микроскопа.

Освещение при микроскопии играет весьма существенную роль.

Неправильное или недостаточное освещение не позволит использовать полностью все возможности микроскопа.

Хорошее освещение достигается при установке света по методу Келлера. Для этого устанавливают осветитель на расстоянии 30-40 см от микроскопа и, перемещая патрон с лампочкой или весь осветитель, добиваются четкого изображения нити накала лампы на закрытой полностью диафрагме конденсора так, чтобы это изображение полностью заполняло отверстие конденсора.

Закрыв диафрагму осветителя, открывают диафрагму конденсора и, перемещая конденсор, добиваются резкого изображения диафрагмы осветителя в поле зрения микроскопа. Чтобы яркий свет не слепил глаза, предварительно уменьшают с помощью реостата накал нити лампы.

И, наконец, с помощью зеркала изображение отверстия диафрагмы устанавливают в центре поля зрения, а диафрагму осветителя открывают так, чтобы было освещено все видимое поле зрения. Раскрывать больше диафрагму не нужно, так как это не усилит освещенности, а лишь уменьшит контрастность за счет рассеянного света.

Виды микроскопов

За всю историю развития микроскопной техники было изобретено множество приборов. Все они отличались устройством и принципом действия. Основные виды микроскопов:

  • оптические;
  • электронные;
  • сканирующие зондовые;
  • рентгеновские.

Оптические и электронные

Самым простым и недорогим устройством считается оптический прибор. По своим техническим параметрам он позволяет увеличивать изображение объекта в 2 тыс. раз. Благодаря такому высокому показателю, с помощью оптического микроскопа можно исследовать:

  • структуру клеток;
  • поверхность ткани;
  • дефекты на искусственных объектах и т. д.

Более современным прибором считается электронный микроскоп, который может увеличивать изображение предмета в 20 тыс. раз. От оптического устройства он отличается тем, что вместо луча света используется пучок электронов. Специальные магнитные линзы преобразовывают в изображение перемещение отрицательно заряженных частиц, а направленность пучка регулируется изменением магнитного поля.

Использование прибора в комплексе с компьютером позволяет значительно увеличить изображение и одновременно сделать снимок объекта. Недостатком таких устройств считается высокая стоимость и их эксплуатация только в лабораторных условиях, так как молекулы воздуха воздействуют на электроны, нарушая четкость изображения. Кроме того, чтобы на функционирование микроскопа не влияли внешние магнитные поля, лаборатории размещают в подземных бункерах с толстыми стенами.

Зондовые и рентгеновские

Сканирующие устройства позволяют получить нужное изображение с помощью специального зонда, который выполняет роль объектива и проводит исследование объекта. В итоге получается трехмерное изображение с точными характеристиками исследуемого предмета. Эта новая техника обладает довольно высоким разрешением, а зонд представляет собой сложный механизм, оснащенный чувствительными сенсорами, которые реагируют на перемещение электронов.

Зачастую такие конструкции используются для сканирования объектов со сложным рельефом. Сканерами исследуются внутренние пространства труб и мелких тоннелей. В результате исследования полученные первоначальные показатели обрабатываются математическим методом с помощью специальной компьютерной программы.

Для исследования предметов, размеры которых соизмеримы с длиной электромагнитных волн от 10 до 0,001 нм, применяются рентгеновские микроскопы. По своим характеристикам и эффективности работы эти приборы находятся между оптическими и электронными устройствами. Рентгеновские волны могут проникать сквозь поверхность объекта, поэтому существует возможность, кроме структуры предмета, узнать его химический состав.

Дальше Чужое

Микроскоп — это оптический прибор, позволяющий получить обратное изображение изучаемого объекта и рассмотреть мелкие детали его строения, размеры которых лежат за пределами разрешающей способности глаза.

Устройство микроскопа
Оптическая система микроскопа состоит из основных элементов — объектива и окуляра. Они закреплены в подвижном тубусе, расположенном на металлическом основании, на котором имеется предметный столик.
В современном микроскопе практически всегда есть осветительная система (в частности, конденсор с ирисовой диафрагмой), макро- и микро- винты для настройки резкости, система управления положением конденсора.
В зависимости от назначения, в специализированных микроскопах могут быть использованы дополнительные устройства и системы.

Увеличительные приборы

Общий признак всех живых организмов – клеточное строение, т. е. тела всех организмов состоят из клеток. Клетки достаточно микроскопичны. Для того чтобы рассмотреть мелкие предметы, невидимые невооруженным глазом, необходимы увеличительные приборы.

Самый распространенный увеличительный прибор – лупа – дает увеличение в 3-5 раз. С ее помощью рассматривают мелкие предметы, плохо различимые глазом. Ее основа – обычное увеличительное стекло. Для удобства в использовании оно вставляется в оправу с ручкой. Более сложные лупы снабжены штативом и предметным столиком из прозрачного стекла. Штативные лупы дают увеличение в 10-25 раз (рис. 1).

Рис.1 Ручная и штативная лупы

Устройство микроскопа
Микроскоп (от греч. микрос – малый, скопэ – смотрю) – сложный прибор, позволяющий получать увеличенное изображение очень мелких предметов (рис. 2). Обычный световой микроскоп дает увеличение до 1500 раз. Значительно большее увеличение дают электронные микроскопы.

Рис.2 Световой микроскоп

Основная часть микроскопа – тубус (от лат. тубус – труба) с увеличительными стеклами. В верхней части тубуса установлен окуляр (от лат. окулярис – глазной), в нижней части – объектив (от лат. объективус – предметный). С обеих сторон тубуса имеются винты настройки.

Тубус крепится к штативу. С помощью винта можно опускать и поднимать тубус. В центре предметного столика имеется маленькое отверстие, под которым установлено вращающееся зеркало для улавливания света. Мощный пучок света просвечивает исследуемые объекты насквозь, поэтому такие микроскопы называются световыми.
Чтобы узнать, во сколько раз увеличивается рассматриваемое изображение, необходимо умножить числа, указанные на объективе и окуляре. Например, если на окуляре число 15, на объективе – 40, то 15 х 40 = 600. Значит, предмет увеличивается в 600 раз.Приготовление микропрепарата
Оборудование, необходимое для работы с микроскопом: предметное и покровное стекла, препаровальная игла, пипетка, вода.

Прежде чем рассматривать микропрепарат под микроскопом, нужно его приготовить (рис. 3). Для этого берем предметное стекло, наносим на него пипеткой 1-2 капли воды и размещаем на нем снятую кожицу лука, расправляя ее в капле воды. Накрываем покровным стеклом, устанавливаем на предметный столик и рассматриваем.

Рис.3 Приготовление микропрепарата кожицы лука

При увеличении под микроскопом видны продолговатые клетки, плотно прилегающие друг к другу. Особенно хорошо видны оболочка, цитоплазма и ядро клетки. Если вместо воды капнуть слабый водный раствор йода, ядро приобретет темно-коричневый оттенок и будет более четко видно под микроскопом.

Правила работы с микроскопом:

1.      С микроскопом работают только сидя на стуле. Микроскоп устанавливают на расстоянии 5-8 см от края стола. Перед работой его необходимо протереть сухой салфеткой и не передвигать до конца работы.
2.      Препарат помещают на предметный столик.
3.      На препарат направляют зеркалом свет (попадание света наблюдается через окуляр).
4.      Пользуясь винтом настройки, плавно опускают и поднимают тубус, пока не появится четкое изображение предмета.
5.      После работы микроскоп тщательно протирают и убирают в футляр.
6.      Нельзя ставить микроскоп рядом с химическими реактивами. Он должен храниться в чистом шкафу отдельно.

Биологический русско-английский глоссарий

Лупа – magnifier |ˈmæɡnɪfaɪə|

Микроскоп – microscope |ˈmʌɪkrəskəʊp|

Тубус – Tube |tjuːb|

Штатив – Tripod |ˈtrʌɪpɒd|

Окуляр – Eyepiece |ˈʌɪpiːs|

Объектив – Lens |lenz|

Винт – Screw |skruː|

Объект – Object |ˈɒbdʒɪkt|

Столик – Stage |steɪdʒ|

Подошва – Base |beɪs|

максимум из 20 баллов
Место Имя Записано Баллы Результат
Таблица загружается

Биология, 6 класс; Р.Алимкулова, А.Аметов, Ж.Кожантаева, К.Кайым ,К.Жумагулова. – Алматы “Атамұра” 2015

Биология Растения, Бактерии, Грибы, Лишайники; Учебник для 6-7 классов средней школы. В.А.Корчагина, Москва “Просвещение” 1993 г.

Терминология на английском языке: wooordhunt.ru

Видеоматериалы: InternetUrok.ru

Особенности работы с устройством

Для эффективного изучения объектов следует соблюдать ряд правил при работе с микроскопом. Придерживаясь их, пользователь более эффективно проведет исследование предмета:

  1. Перед началом работы следует подготовить себе место за столом, поставив удобный стул.
  2. Все действия необходимо выполнять только сидя.
  3. Прибор надо протереть от пыли и пятен мягкой салфеткой.
  4. Заняв место за столом, установить микроскоп немного левее себя.
  5. Работа начинается с небольшого увеличения.
  6. Затем устанавливается уровень освещения. Для этого следует включить источник света и, глядя в окуляр одним глазом, установить нужную яркость. Если микроскоп с зеркалом, его направляют вогнутой стороной на окно, чтобы отражение света попадало на предметный столик.
  7. Когда прибор будет настроен, на столик крепится зажимами исследуемый объект. Далее, винтом грубой регулировки тубус устанавливается так, чтобы расстояние между линзой и предметом было 4—5 мм.
  8. Проверив местоположение объекта, винтом тонкой регулировки устанавливается окончательная резкость.
  9. Для детального изучения предмета, повернув револьверную головку, следует установить объектив, увеличивающий в 40 раз. Затем опять микрометренным винтом настроить правильный фокус. Причем регулировка осуществляется таким образом, чтобы риска на винте постоянно находилась между двумя черточками на коробке механизма. Если это правило нарушить, винт просто перестанет работать.

Закончив работу с большим увеличением, следует опять вернуться на малое значение, поднять объектив, убрать объект со стола, протереть все детали прибора, поставить его в шкаф и накрыть полиэтиленовой пленкой.

Как работает микроскоп

В работе микроскопа присутствует тот же принцип, что и в телескопе-рефлекторе. В телескопе лучи света, когда проходят через стекло или стеклянную линзу, преломляются под определённым углом. Телескоп собирает параллельные лучи воедино в точку фокуса, откуда с помощью окуляра мы можем её видеть. Что касается микроскопа, то тут очень схожий принцип действия. Сперва расходящийся пучок света становится параллельным, после чего преломляется в окуляре, чтоб наблюдающий мог разглядеть картинку.

  1. Окуляр
  2. Тубус
  3. Держатель
  4. Винт грубой фокусировки
  5. Винт точной (микрометренной) фокусировки
  6. Револьверная головка
  7. Объектив
  8. Предметный столик
  1. Осветитель
  2. Ирисовая полевая диафрагма
  3. Зеркало
  4. Ирисовая апертурная диафрагма
  5. Конденсор
  6. Препарат
  7. Увеличенное действительное промежуточное изображение препарата, образуемое объективом
  8. Увеличенное мнимое окончательное изображение препарата, наблюдаемое в окуляре
  9. Объектив
  10. Окуляр

Правила работы

Приступая к работе с микроскопом, необходимо усвоить несколько несложных правил и подготовить некоторые приборы и вещества. Вам понадобятся предметное и покровное стекла, пипетка, пинцет, игла, а также вода, спирт, водный раствор йода (для окраски). Продаются готовые наборы для работы с микроскопом, которые вы можете использовать в своих исследованиях. В зависимости от специализации в набор могут входить и готовые микропрепараты, некоторые из них перечислены ниже.

Первое, что надо сделать, — это удобно разместить микроскоп на столе, возле окна. Будет еще лучше, если рядом вы поставите яркую настольную лампу. Поверните микроскоп ручкой штатива к себе.

Теперь нужно добиться правильного освещения. Для этого смотрите в окуляр и поверните зеркальце под предметным столиком к окну или другому источнику света так, чтобы отраженные от зеркала лучи попадали в объектив, а поле зрения в окуляре было наиболее освещенным.

Положите предмет, который собираетесь рассмотреть, на предметный столик — прямо над отверстием. Вращая винт и наблюдая сбоку за расстоянием между объективом и объектом, опустите объектив почти до соприкосновения с объектом. Готово!

Ну а теперь смотрите в окуляр и очень медленно вращайте на себя и от себя винт фокусировки, пока изображение не станет четким.

Поделиться ссылкой

Устройство микроскопа

Основными оптическими системами микроскопа являются: ∙

  • Осветительная (в том числе, конденсор )
  • Воспроизводящая (в том числе объективы ).
  • Наблюдательная (окуляры )

Осветительная система микроскопа представляет собой систему линз, диафрагм и зеркал (последние применяются при необходимости), обеспечивающую равномерное освещение объекта и полное заполнение апертуры объектива. Осветительная система микроскопа проходящего света включает также источник света, и оптическую систему, состоящую из коллектора и конденсора.

Источники света в микроскопе могут быть естественными и искусственными.

Микроскопы бывают разные, некоторые работают при помощи солнца, некоторые при помощи электрического освещения.

Увеличивает микроскоп при помощи линз, сделанных из стекла. Линзы собраны в группы и названы объективами и окулярами. Объектив увеличивает изображение объекта от 4 до 100 крат. Окуляры дают возможность посмотреть на изображение увеличенное объективом и сами увеличивают изображение на 5-25 крат.

Окуляр вставлен в окулярную трубку,а в револьвер установлены несколько объективов(4Х; 10Х; 40Х). Револьвер позволяет быстро изменять увеличение микроскопа. Ручки грубой и тонкой настройки позволяют быстро настроить фокус микроскопа на предмет.
Дисковая диафрагма позволяет изменять количество света. Бывают микроскопы бинокулярные для работы двумя глазами. Для длительной постоянной работы лучше иметь бинокулярный микроскоп, потому что когда постоянно зажмуриваешся портится зрение.

Объективы

Объективы, входящие в комплект микроскопа, рассчитаны на механическую длину тубуса 160 мм, высоту 33 мм, линейное поле зрения в плоскости изображения 18 мм и толщину покровного стекла 0,17 мм. Микроскоп укомплектован ахромат объективами с увеличением 4×, 10×, 40×. На корпусе каждого объектива ненесены линейное увеличение и числовая апертура и имеется цветовая маркировка, соответствующая увеличению.

Характеристики объективов
Увеличение Числовая апертура Цвет
0,1 красный
10× 0,25 желтый
20× 0,45 зеленый
40× 0,65 голубой
60× 0,85 синий
100×ми 1,25 белый

Объективы увеличением 40×, 60×, 100× имеют пружинящую оправу для предохранения от механического повреждения фронтальной линзы объектива и объекта. Объектив 100× рассчитан на работу с масляной иммерсией.

Окуляры

В комплект микроскопа могут входить различные окуляры.

Окуляры
Маркировка Увеличение Линейное поле
5 20
10× 10 13
16× 16 10

Предметный столик

Прямоугольный не перемещаемый предметный столик (рис. «Внешний вид микроскопа Биомед 1″) размером 110мм х 120мм. Объект крепится на поверхности столика двумя держателями препарата (рис. «Внешний вид микроскопа Биомед 1»).

Подготовка микроскопа к работе

  1. Освободить микроскоп от упаковки.
  2. Проверить комплектность микроскопа по прилагаемому паспорту.
  3. Произвести внешний осмотр микроскопа и принадлежностей, убедиться в отсутствии повреждений.
  4. Вставить в окулярную трубку окуляр (рис.»Внешний вид микроскопа Биомед 1″).
  5. Поднять тубус вращением рукоятки грубой настройки (рис.»Внешний вид микроскопа Биомед 1″).
  6. Объективы (рис.»Внешний вид микроскопа Биомед 1″) должны быть установлены в гнезда револьверного устройства (рис.»Внешний вид микроскопа Биомед 1″) в порядке возрастания.
  7. Направить свет на объект исследования с помощью зеркального осветителя.
Микроскоп готов к работе

История

История микроскопа может быть прослежена с конца 16-го или начала 17-го века. До сих пор ведутся споры о том, кто же на самом деле изобрел этот инструмент. Согласно новой всемирной энциклопедии, считается что прибор был предоставлен  производителями очков из Нидерландов: Хансу Липперши, Хансу и Захариасу Янсену.

Также Галилео Галилей в 1600-х годах изобрел устройство, внесшее свой вклад в область микроскопии. В его устройстве использовались линзы вогнутой и выпуклой формы.

Этот инструмент становился все более сложным с появлением науки и техники и теперь доступен в различных типах, которые используются для многих целей.

Наиболее распространенным среди них является самый старый и простейший тип микроскопа, называемый оптическим или световым микроскопом, который имеет три типа — простой, сложный свет и стерео.

История создания

Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.

Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.

А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен – изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности. Как бы там ни было, но точно узнать был ли Захарий Ясен изобретателем микроскопа или нет, мы, к сожалению, не можем.

А вот репутация Галилео Галилея в этом плане безупречна. Этого человека мы знаем, прежде всего, как, великого астронома, ученого, гонимого католической церковью за свои убеждения о том, что Земля вращается вокруг Солнца, а не наоборот. Среди важных изобретений Галилея – первый телескоп, с помощью которого ученый проник своим взором в космические сферы. Но сфера его интересов не ограничивалась лишь звездами и планетами, ведь микроскоп, это по сути тот же телескоп, но только наоборот. И если с помощью увеличительных линз можно наблюдать за далекими планетами, то почему бы не обратить их мощь в другое направление – изучить то, что находится у нас «под носом». «Почему бы и нет», – наверное, подумал Галилей, и вот, в 1609 году он уже представляет широкой публике в Академии деи Личеи свой первый составной микроскоп, который состоял из выпуклой и вогнутой увеличительных линз.

Старинные микроскопы.

Позднее, спустя 10 лет, голландский изобретатель Корнелиус Дреббель усовершенствовал микроскоп Галилея, добавив в него еще одну выпуклую линзу. Но настоящую революцию в развитии микроскопов совершил Христиан Гюйгенс, голландский физик, механик и астроном. Так он первым создал микроскоп с двухлинзовой системой окуляров, которые регулировались ахроматически. Стоит заметить, что окуляры Гюйгенса применяются и по сей день.

А вот знаменитый английский изобретатель и ученый Роберт Гук навеки вошел в историю науки, не только как создатель собственного оригинального микроскопа, но и как человек, сделавший при его помощи великое научное открытие. Именно он первым увидел через микроскоп органическую клетку, и предположил, что все живые организмы состоят из клеток, этих мельчайших единиц живой материи. Результаты своих наблюдений Роберт Гук опубликовал в своем фундаментальном труде – Микрографии.

Опубликованная в 1665 году Лондонским королевским обществом, эта книга тут же стала научным бестселером тех времен и произвела подлинный фурор в научном сообществе. Еще бы, ведь в ней имелись гравюры с изображением увеличенной в микроскоп блохи, вши, мухи, комара, клетки растения. По сути, этот труд представлял собой удивительное описание возможностей микроскопа.

Интересный факт: термин «клетка» Роберт Гук взял потому, что клетки растений ограниченные стенами напомнили ему монашеские кельи.

Так выглядел микроскоп Робета Гука, изображение из «Микрографии».

И последним выдающимся ученым, который внес свой вклад в развитие микроскопов, был голландец Антонии ван Левенгук. Вдохновленный трудом Роберта Гука, «Микрографией», Левенгук создал свой собственный микроскоп. Микроскоп Левенгука, хотя и обладал лишь одной линзой, но она была чрезвычайно сильной, таким образом, уровень детализации и увеличения у его микроскопа был лучшим на то время. Наблюдая в микроскоп живую природу, Левенгук сделал множество важнейших научных открытий в биологии: он первым увидел эритроциты, описал бактерии, дрожжи, зарисовал сперматозоиды и строение глаз насекомых, открыл инфузории и описал многие их формы

Работы Левенгука дали огромный толчок к развитию биологии, и помогли привлечь внимание биологов к микроскопу, сделали его неотъемлемой частью биологических исследований, аж по сей день. Такая в общих чертах история открытия микроскопа

История возникновения

Микроскоп представляет собой прибор, с помощью которого можно значительно увеличить изображение, детально изучить строение и структур рассматриваемого объекта, а также замерить его детали, плохо различимые или вообще невидимые невооруженным глазом.

Методы и технологии, позволяющие использовать данный прибор в практических целях носят название микроскопия.

Самыми первыми изобретенными устройствами были оптические микроскопы. К тому же невозможно с уверенностью сказать о том, кому принадлежат лавры такого изобретения. В 1538 году венецианский врач Джироламо Фракасторо предложил использовать комбинацию из двух линз для достижения наибольшего увеличения. А самые ранние упоминания именно о микроскопе датируются 1590 годом и уходит корнями в голландский город Мидделбург, где работали двое мастеров Иоанн Липперсгей и Захарий Янсен, которые изготавливали очки.

Примерно в 1624 году свой первый составной прибор под названием «оккиолино», что в переводе с итальянского означает «маленький глаз», представил итальянский физик и астроном Галилео Галилей. И только спустя год его товарищ Джованни Фабер предложил называть полученное изобретение микроскопом.

Опыты

Разведение инфузории-туфельки

Насладиться созерцанием инфузории-туфельки (как было уже замечено, её присутствие видно и невооружённому глазу, но всякое вооружение будет только кстати 🙂 совершенно нетрудно в домашних условиях. Ибо вопреки расхожей отечественной инструкции по замачиванию банановых корок, и уж тем более иностранной идее с «зелёной водой» («green water»), особенно тиражируемой на англоязычных страницах, проще, экологичнее и эффективнее разводить инфузорию просто на кусочке моркови. Морковь довольно долго не «портится» в воде (то есть не так быстро разлагается бактериями), что желательно для удобства эксперимента — вода некоторое время остаётся довольно прозрачной и дело обходится без плесени. Кусочек моркови (из расчёта не более 1 г на литр) помещается в банку с водой и ставится в тёмное тёплое (+22-26oC) место. Обычно уже через пару суток, взяв пробу «мути», окружающей морковь, под микроскопом можно обнаружить инфузорий. Ещё через некоторое время, когда растворённый в воде кислород практически иссякнет, инфузории окажутся самой заметной составляющей приповерхностного слоя и станут видны невооружённым глазом в виде клубящихся скоплений белых точек (продолговатой формы), хаотично движущихся в толще воды.

Функция и строение инструмента

Микроскоп является важным инструментом в мире биологических наук. Это инструмент для научного образования и научных исследований. Без него человек никогда не сможет понять мир микроорганизмов.
Функция состоит в том, чтобы видеть вещи на разных уровнях или увеличениях (например, клетки, которые нельзя увидеть невооруженным глазом).

Чтобы лучше понять функцию и основную структуру рассмотрим строение устройства:

Окуляр

Именно через окуляр мы смотрим на образец, помещенный на подмостки микроскопа. Он содержит две или более линз. Наиболее распространенное увеличение для окуляра 10-х однако они также могут быть 2-x и 5-x. Глазная часть съемная и может быть заменена другой частью с другим увеличением.

Держатель окуляра

Просто соединяет окуляр с корпусом обычно с помощью установочного винта, чтобы пользователь мог легко менять окуляр для изменения увеличительной мощности.

Линза объектива

Основные линзы составного микроскопа и могут иметь увеличение 4-x, 5-x, 10-x, 20-x, 40-x, 50-x и 100-x. Значения увеличения обычно гравируются на стороне каждой линзы. Составная часть к которой крепятся эти линзы может поворачиваться вручную, чтобы получить объектив нужного увеличения для фокусировки на объекте.

Опора и наконечник

Опора соединяет линзовый аппарат с основанием. Наконечник соединяет объектив с корпусом. С помощью  вращающейся носовой части можно прикрепить до пяти различных степеней увеличения при повороте в нужное положение и использовании с существующим окуляром.

Определение и история микроскопа

По-гречески micro s означает маленький, а scopein — видеть. Таким образом, микроскоп можно рассматривать как оптический инструмент, который полезен в качестве вспомогательного средства для наблюдения и наблюдения за объектами очень небольшого размера.

В I веке нашей эры во времена Римской империи микроскоп начался с открытия стекла, а затем была открыта выпуклая линза, а затем использование выпуклой линзы для наблюдения за объектами небольших размеров и даже для фокусировки солнечного света, чтобы они могли сжигать определенные объекты.

Учеными, разработавшими микроскоп, были Захариас Янссен и Ганс, Галилео Галилей. Энтони Левенгук и Роберт Гук.

Виды микроскопов

На сегодняшний момент существует множество разновидностей данного прибора. Микроскопы бывают: оптические и электронные, рентгеновские и сканирующие зондовые. Есть также дифференциальный интерференционно-контрастный микроскоп.

Оптические приборы в свою очередь делятся на ближнепольные, конфокальные и двухфотонные лазерные микроскопы. Электронные подразделяются на просвечивающие и растровые устройства. Сканирующие представляют собой совокупность атомно-силовых и туннельных микроскопов, а рентгеновские приборы бывают лазерными, отражательными и проекционными.

Естественной оптической системой является глаз человека. При этом она характеризуется точным разрешением. Нормальное разрешение для обычного глаза составляет примерно 0,2 мм. Это характерно при удалении объекта на расстояние оптимального видения, которое составляет 250 мм. Стоит заметить, что размеры животных и растительных клеток, различных микроорганизмов, деталей структуры металлов и разного рода сплавов, а также мелких кристаллов намного меньше нормального разрешения для человеческого глаза.

Ученые примерно до середины прошлого века использовали в работе только видимое оптическое излучение, диапазоном от четырехсот до семисот нанометров. Иногда применялись приборы с ближним ультрафиолетом. Получается, что оптические микроскопы способны различать вещества с расстоянием между элементами до 0,20 мкм, а это значит, что он может добиться максимального увеличения 2000 крат.

В электронных устройствах для увеличения используется пучок электронов, обладающих волновыми свойствами. При этом электроны достаточно легко можно сфокусировать при помощи электромагнитных линз, потому что они представляют собой заряженные частицы. К тому же электронное изображение не составит труда перевести в видимое.

У электронных устройств разрешающая способность в несколько тысяч раз превышает разрешение светового оптического микроскопа. А в современных приборах она может быть даже менее десяти нанометров.

Сканирующие зондирующие микроскопы – это класс приборов, работа которых основана на сканировании зондом различных поверхностей. Это достаточно новые устройства, изображение на которых получается при помощи фиксирования соприкосновений между поверхностью и зондом. На данный момент в таких устройствах удалось добиться фиксации взаимодействия зонда с некоторыми молекулами и атомами, что выводит сканирующий зондирующий микроскоп на уровень электронных приборов. А в некоторых показателях такие устройства даже превосходят их.

Рентгеновские микроскопы представляют собой прибор, позволяющий исследовать очень малые объекты, величины которых можно сопоставить с длиной рентгеновской волны. Работа такого прибора основана на электромагнитном излучении, имеющим длину волны до одного нанометра. Разрешающая способность рентгеновских устройств намного выше оптических, но ниже электронных микроскопов.

Функциональные составные микроскопа

Данное оборудование содержит в себе три главные составные части: осветительная, воспроизводящая и визуализирующая. Осветительная составная микроскопа необходима для того, чтоб воссоздавать поток света так, чтоб другие части прибора, как можно точнее делали свою работу. Осветительная часть оборудования для проходящего светового потока находится непосредственно за препаратом, если микроскоп прямой, а если микроскоп инвертированный, то перед объектом и поверх объектива.

Осветительная составная прибора содержит в себе источник освещения, который может быть представлен лампой, или же электрическим блоком питания, а также всевозможную механическую оптику, в которую входят: конденсоры, коллекторы, полевые и апертурные регулируемые и ирисовые диафрагмы.

Воспроизводящая составная микроскопа нужна для того, чтоб воспроизводить объект непосредственно в горизонтали картинки с необходимым для рассмотрения визуальными качествами и увеличением. Это значит, что воспроизводящая составная нужна для такого отображения картинки в окуляре, какое наиболее точно и детально показывает объект с определённым разрешением для оптики микроскопа передачей цвета и контрастности.

С помощью воспроизводящей части удаётся добиться первой ступени увеличения картинки и находится она за объектом до горизонтали изображения прибора. Воспроизводящие части прибора также имеют объективы, и промежуточные системы стационарной оптики.

Сегодня это оборудование работает с помощью специальных систем объективов и оптики, которые скорректированы на отметку бесконечности. Для этого в приборах используют тубусные системы, благодаря которым параллельные лучи света, выходящие через объектив, соединяются в плоскости картинки в микроскопе.

Визуализирующие составные прибора необходимы для того, чтоб получать настоящую картинку исследуемого предмета на сетчатке, пластине, пленке, на мониторе с большой второй степенью увеличения.

Визуализирующие части в микроскопе находится между камерой или сетчаткой глаза, а также горизонталью картинки объектива. Эти части содержат в себе визуальные насадки монокулярного, бинокулярного или тринокулярного типа со специальными системами наблюдения, которые представляет собой окуляры, работающие по принципу лупы.

Помимо этого, визуализирующая часть микроскопа также содержит в себе дополнительные увеличительные системы, всевозможные насадки для проекции, включая также и дискуссионные для нескольких исследователей. Также система включает в себя приспособления для рисования, проведения анализа, а также фиксирования картинки с определёнными согласующими частями.