Переделка веб-камеры в микроскоп
Теперь самое главное что касается переделки веб-камеры в самодельный микроскоп. Нам нужно добраться до объектива веб-камеры затем, чтобы его перевернуть. Только перевернув объектив другой стороной, можно получить обратный процесс увеличения веб-камерой.
Итак, в данном деле нам помогут отвёртка и острый нож, которым аккуратно поддевается корпус веб-камеры. Добравшись до объектива, его нужно аккуратно снять, перевернуть другой стороной, и приклеить к месту крепления суперклеем
При этом очень важно, чтобы суперклей не попал на рабочую часть объектива
Теперь можно собирать корпус веб-камеры, и тестировать самодельный микроскоп на деле. Однако для лучшего рассмотрения объектов исследования, нужно всё-таки снабдить микроскоп дополнительным освещением, в качестве которого и будет использоваться светодиодный фонарик, который располагается внизу, под пластиком или стеклом микроскопа, на расстоянии в 10-15 см.
Разрешающие способности
Одним из параметров микроскопа является его разрешающая способность. Различные виды микроскопов имеют, соответственно, разный показатель этой характеристики. Так что же это такое?
Разрешающая способность – это возможности прибора показывать четкое и качественное изображение, картинку двух расположенных рядом, фрагментов исследуемого объекта. Показатель степени углубления в микромир и общая возможность его исследования базируются именно на этой способности. Данную характеристику определяет длина волны излучения, которую используют в микроскопе. Главным ограничением является невозможность получения картинки объекта, размеры которого меньше размера длины излучения.
Ввиду написанного выше становится очевидно, что благодаря разрешающей способности мы можем получать четкое изображение деталей изучаемого объекта.
Электронный микроскоп
История развития электронного микроскопа началась в 1931 году, когда некто Р. Руденберг получил патент на первый просвечивающий электронный микроскоп. Затем в 40-х годах прошлого века появились растровые электронные микроскопы, достигшие своего технического совершенства уже в 60-е годы прошлого века. Они формировали изображение объекта благодаря последовательному перемещению электронного зонда малого сечения по объекту.
Как работает электронный микроскоп? В основе его работы лежит направленный пучок электронов, ускоренный в электрическом поле и выводящий изображение на специальные магнитные линзы, этот электронный пучок намного меньше длины волн видимого света. Все это дает возможность увеличить мощность электронного микроскопа и его разрешающую способность в 1000-10 000 раз по сравнению с традиционным световым микроскопом. Это главное преимущество электронного микроскопа.
Так выглядит современный электронный микроскоп.
Виды микроскопов
За всю историю развития микроскопной техники было изобретено множество приборов. Все они отличались устройством и принципом действия. Основные виды микроскопов:
- оптические;
- электронные;
- сканирующие зондовые;
- рентгеновские.
Оптические и электронные
Самым простым и недорогим устройством считается оптический прибор. По своим техническим параметрам он позволяет увеличивать изображение объекта в 2 тыс. раз. Благодаря такому высокому показателю, с помощью оптического микроскопа можно исследовать:
- структуру клеток;
- поверхность ткани;
- дефекты на искусственных объектах и т. д.
Более современным прибором считается электронный микроскоп, который может увеличивать изображение предмета в 20 тыс. раз. От оптического устройства он отличается тем, что вместо луча света используется пучок электронов. Специальные магнитные линзы преобразовывают в изображение перемещение отрицательно заряженных частиц, а направленность пучка регулируется изменением магнитного поля.
Использование прибора в комплексе с компьютером позволяет значительно увеличить изображение и одновременно сделать снимок объекта. Недостатком таких устройств считается высокая стоимость и их эксплуатация только в лабораторных условиях, так как молекулы воздуха воздействуют на электроны, нарушая четкость изображения. Кроме того, чтобы на функционирование микроскопа не влияли внешние магнитные поля, лаборатории размещают в подземных бункерах с толстыми стенами.
Зондовые и рентгеновские
Сканирующие устройства позволяют получить нужное изображение с помощью специального зонда, который выполняет роль объектива и проводит исследование объекта. В итоге получается трехмерное изображение с точными характеристиками исследуемого предмета. Эта новая техника обладает довольно высоким разрешением, а зонд представляет собой сложный механизм, оснащенный чувствительными сенсорами, которые реагируют на перемещение электронов.
Зачастую такие конструкции используются для сканирования объектов со сложным рельефом. Сканерами исследуются внутренние пространства труб и мелких тоннелей. В результате исследования полученные первоначальные показатели обрабатываются математическим методом с помощью специальной компьютерной программы.
Для исследования предметов, размеры которых соизмеримы с длиной электромагнитных волн от 10 до 0,001 нм, применяются рентгеновские микроскопы. По своим характеристикам и эффективности работы эти приборы находятся между оптическими и электронными устройствами. Рентгеновские волны могут проникать сквозь поверхность объекта, поэтому существует возможность, кроме структуры предмета, узнать его химический состав.
Оптические микроскопы для пайки
Цифровые микроскопы не обладают главным – это наличие «3D изображения». На экране цифрового микроскопа изображение кажется плоским, по сравнению с оптическим увеличением.
Одним из самых популярных и легендарных оптических микроскопов является МБС-10. Это советский микроскоп, который использовался в разных отраслях. Начиная с обработки ювелирных изделий, заканчивая пайкой электроникой и работой с микроскопическими компонентами.
У этого микроскопа массивная станина, хорошая фокусировка и регулировка. А подсветка выполнена в виде обычной лампы. Однако его главный минус – это астрономическая цена (около 80 000 рублей!). Сейчас такой микроскоп сильно переоценен в виду повышенного проса.
Тем не менее, на том же AliExpress можно найти аналог на любой бюджет.
Есть варианты, как и за 10 000 рублей, так и за 3000 рублей.
Несомненный плюс китайских микроскопов – наличие комплектующих. Вы можете без проблем купить окуляры лучшего качества или новую подсветку взамен старой.
Еще есть варианты оптических микроскопов, совмещённых с цифровыми. Это когда к обычному микросому прикрепляют на один из окуляров головку цифрового микроскопа. И оптическим микроскопом можно пользоваться одновременно, записывая при этом весь процесс пайки.
Главная проблема оптических микроскопов – к ним нужно привыкнуть. Да, первое время будет не привычно. Не видя инструментов боковым зрением нужно ими орудовать во время работы, но это дело привычки и временные трудности.
Особенности работы с устройством
Для эффективного изучения объектов следует соблюдать ряд правил при работе с микроскопом. Придерживаясь их, пользователь более эффективно проведет исследование предмета:
- Перед началом работы следует подготовить себе место за столом, поставив удобный стул.
- Все действия необходимо выполнять только сидя.
- Прибор надо протереть от пыли и пятен мягкой салфеткой.
- Заняв место за столом, установить микроскоп немного левее себя.
- Работа начинается с небольшого увеличения.
- Затем устанавливается уровень освещения. Для этого следует включить источник света и, глядя в окуляр одним глазом, установить нужную яркость. Если микроскоп с зеркалом, его направляют вогнутой стороной на окно, чтобы отражение света попадало на предметный столик.
- Когда прибор будет настроен, на столик крепится зажимами исследуемый объект. Далее, винтом грубой регулировки тубус устанавливается так, чтобы расстояние между линзой и предметом было 4—5 мм.
- Проверив местоположение объекта, винтом тонкой регулировки устанавливается окончательная резкость.
- Для детального изучения предмета, повернув револьверную головку, следует установить объектив, увеличивающий в 40 раз. Затем опять микрометренным винтом настроить правильный фокус. Причем регулировка осуществляется таким образом, чтобы риска на винте постоянно находилась между двумя черточками на коробке механизма. Если это правило нарушить, винт просто перестанет работать.
Закончив работу с большим увеличением, следует опять вернуться на малое значение, поднять объектив, убрать объект со стола, протереть все детали прибора, поставить его в шкаф и накрыть полиэтиленовой пленкой.
§ 3. Устройство микроскопа и техника микроскопирования
Для исследования дрожжей, бактерий и плесневых грибов применяют микроскопы, предназначенные для рассмотрения прозрачных препаратов в проходящем свете (рис. 8).
Рис. 8. Микроскоп МБИ-1: 1 — зеркало, 2 — конденсор, 3 — предметный столик, 4 — объективы, 5 — револьвер, 6 — окуляр, 7 — тубус, 8 — тубусодержатель, 9 — макрометрический винт, 10 — микрометрический винт, 11 — ножка
Оптическая часть микроскопа. Основной частью оптической системы микроскопа является объектив, увеличивающий изображение предмета. Он состоит из ряда линз, склеенных канадским бальзамом и заключенных в металлическую трубку; на трубке имеется резьба, при помощи которой объектив ввинчивается в специальное гнездо револьвера.
Изображение, даваемое объективом, рассматривают с помощью окуляра, находящегося в верхней части тубуса микроскопа. Биологические микроскопы снабжаются тремя сменными окулярами. На верхней оправе линзы окуляра указано его увеличение. Обычно окуляры дают увеличение в 7, 10 и 15 раз. Общее увеличение объекта микроскопом равно произведению увеличения окуляра на увеличение объектива = 900 раз.
Осветительное устройство располагается под столиком микроскопа и состоит из конденсора с ирис-диафрагмой и зеркала.
Механическая часть микроскопа. Эта часть состоит из штатива, тубусодержателя с револьвером, винтов для передвижения тубуса (макрометрического и микрометрического), осветительного аппарата и предметного столика микроскопа. Основными частями штатива являются нижняя подставка (ножка), придающая микроскопу устойчивость, и тубусодержатель микроскопа.
Техника микроскопирования. Прежде чем начать микроскопирование, необходимо установить правильное освещение. Для этого с микроскопа снимают окуляр и, глядя прямо в объектив, устанавливают зеркало так, чтобы источник света (лампа или окно) были видны посредине объектива. После предварительной установки света на предметный столик микроскопа кладут готовый препарат и закрепляют его зажимами. При помощи макрометрического винта опускают тубус почти до соприкосновения с покровным стеклом. Затем, глядя в окуляр, постепенно поднимают тубус до появления изображения. Для наведения резкости пользуются микрометрическим винтом.
При микроскопиравании следует держать оба глаза открытыми. Смотрят в микроскоп левым глазом.
Техника приготовления препарата для микроскопирования
Каплю исследуемой жидкости наносят на чистое предметное стекло и осторожно накрывают покровным стеклом. Если препарат готовят с плотной питательной среды, то на предметное стекло наносят капельку чистой водопроводной воды, в нее помещают исследуемую культуру и препарат накрывают покровным стеклом
Под последним не должно оставаться пузырьков воздуха, так как они мешают микроскопированию. Избыток жидкости, выступающий из-за покровного стекла, убирают фильтровальной бумагой, заранее нарезанной небольшими узкими полосками. Готовый препарат помещают на предметный столик и исследуют.
Техника посевов на питательные среды и состав сред описаны в разделе «Микробиологический контроль».
Принцип работы
Сканирующий электронный микроскоп (СЭМ) — это тип электронного микроскопа, который изображает образец, сканируя его сфокусированным пучком заряженных электронов в растровом сканирующем узоре (прямоугольном узоре захвата и реконструкции изображения). Различные сигналы, которые могут быть обнаружены, когда электроны взаимодействуют с атомами в образце, где сигналы могут быть интерпретированы в информацию о свойствах поверхности образца. Затем положение луча комбинируется с обнаруженным сигналом для получения изображения. СЭМ может достигать разрешения лучше, чем 1 нанометр. Образцы можно наблюдать в высоком вакууме, в низком вакууме, во влажных условиях, в окружающей среде, а также в широком диапазоне криогенных или повышенных температур.
Наиболее распространенным режимом СЭМ является обнаружение вторичных электронов, испускаемых атомами, возбужденными электронным пучком. Количество вторичных электронов зависит от угла, под которым пучок встречается с поверхностью образца. При сканировании образца и сборе вторичных электронов с помощью специального детектора создается изображение, отображающее топографию поверхности.
Как следует из названия, СЭМ использует электронную пушку, которая испускает сфокусированный пучок электронов высокой энергии, заменяющий источник света, используемый в оптическом микроскопе.
Достоинства
- Сила увеличения составляет около 300 000 х по сравнению с несколькими сотнями раз, которые производит оптический.
- Обеспечивает большую глубину резкости по сравнению с оптическими, что позволяет сложным 3D-объектам оставаться четкими и в фокусе.
- Можно делать высококачественные цифровые фотографии всего, что видно в это устройство.
Недостатки
- Недостатки обычного СЭМ заключаются в том, что образец должен быть твердым и небольшим, чтобы он мог поместиться внутри камеры.
- Очень легкие элементы, такие как H, He, Li и элементы, которые находятся ниже атомного номера 14, не могут быть обнаружены с помощью этого типа.
- Самые дешевые стоят около десятков тысяч долларов и являются достаточно громоздкими и сложными инструментами, требующими высокой технической экспертизы и подготовки при обращении.
Таким образом, эти факты ограничивают использование при исследованиях и промышленном применении.
Проверяем наш самодельный микроскоп
Теперь у нас есть готовый микроскоп. Посмотрим, как с этим работать. Прежде всего мы должны сбалансировать платформу телефона. Для этого, повернув четыре винта, вы можете изменить высоту держателя телефона. Держите высоту примерно на 2-3 мм. Хорошо, теперь вы должны поместить камеру вашего телефона идеально выровненной с объективом на платформе телефона. Это можно сделать, включив приложение камеры и выровняв его до получения идеального изображения.
После этого нам нужен образец для наблюдения. Как вы можете видеть на изображении, я поместил 2 луковичные ткани. Поскольку у нас достаточно места, можно разместить более одного образца. Затем включите вспышку. Теперь вы можете сдвинуть платформу телефона на стекло, пока изображение с камеры не покажет сфокусированное изображение ткани. Фокусировка может быть выполнена с помощью двух винтов, которые наиболее близко расположены к камере.
Виды микроскопов
На сегодняшний момент существует множество разновидностей данного прибора. Микроскопы бывают: оптические и электронные, рентгеновские и сканирующие зондовые. Есть также дифференциальный интерференционно-контрастный микроскоп.
Оптические приборы в свою очередь делятся на ближнепольные, конфокальные и двухфотонные лазерные микроскопы. Электронные подразделяются на просвечивающие и растровые устройства. Сканирующие представляют собой совокупность атомно-силовых и туннельных микроскопов, а рентгеновские приборы бывают лазерными, отражательными и проекционными.
Естественной оптической системой является глаз человека. При этом она характеризуется точным разрешением. Нормальное разрешение для обычного глаза составляет примерно 0,2 мм. Это характерно при удалении объекта на расстояние оптимального видения, которое составляет 250 мм. Стоит заметить, что размеры животных и растительных клеток, различных микроорганизмов, деталей структуры металлов и разного рода сплавов, а также мелких кристаллов намного меньше нормального разрешения для человеческого глаза.
Ученые примерно до середины прошлого века использовали в работе только видимое оптическое излучение, диапазоном от четырехсот до семисот нанометров. Иногда применялись приборы с ближним ультрафиолетом. Получается, что оптические микроскопы способны различать вещества с расстоянием между элементами до 0,20 мкм, а это значит, что он может добиться максимального увеличения 2000 крат.
В электронных устройствах для увеличения используется пучок электронов, обладающих волновыми свойствами. При этом электроны достаточно легко можно сфокусировать при помощи электромагнитных линз, потому что они представляют собой заряженные частицы. К тому же электронное изображение не составит труда перевести в видимое.
У электронных устройств разрешающая способность в несколько тысяч раз превышает разрешение светового оптического микроскопа. А в современных приборах она может быть даже менее десяти нанометров.
Сканирующие зондирующие микроскопы – это класс приборов, работа которых основана на сканировании зондом различных поверхностей. Это достаточно новые устройства, изображение на которых получается при помощи фиксирования соприкосновений между поверхностью и зондом. На данный момент в таких устройствах удалось добиться фиксации взаимодействия зонда с некоторыми молекулами и атомами, что выводит сканирующий зондирующий микроскоп на уровень электронных приборов. А в некоторых показателях такие устройства даже превосходят их.
Рентгеновские микроскопы представляют собой прибор, позволяющий исследовать очень малые объекты, величины которых можно сопоставить с длиной рентгеновской волны. Работа такого прибора основана на электромагнитном излучении, имеющим длину волны до одного нанометра. Разрешающая способность рентгеновских устройств намного выше оптических, но ниже электронных микроскопов.
Микроскоп своими руками: мастер-класс по изготовлению электронного устройства
Микроскоп нужен не только для изучения окружающего мира и предметов, хотя это так интересно! Иногда это просто необходимая вещь, которая облегчит ремонт аппаратуры, поможет сделать аккуратные спайки, не ошибиться с креплением миниатюрных деталей и их точным местом. Но необязательно приобретать дорогостоящий агрегат. Есть прекрасные альтернативы. Из чего можно сделать микроскоп в домашних условиях?
Микроскоп из фотоаппарата
Один из самых простых и доступных способов, но при наличии всего необходимого. Понадобится фотоаппарат с объективом 400 мм, 17 мм. Ничего разбирать и вынимать не нужно, камера останется рабочей.
Делаем микроскоп из фотоаппарата своими руками:
- Соединяем объектив 400 мм и 17 мм.
- Подносим к линзе фонарик, включаем.
- На стекло наносим препарат, вещество или другой микропредмет изучения.
Фокусируем, фотографируем исследуемый предмет в увеличенном состоянии. Фото с такого самодельного микроскопа получается достаточно четким, прибор может увеличить волос или шерсть, чешуйку лука. Больше подходит для развлечения.
Микроскоп из мобильного телефона
Второй упрощенный способ изготовления альтернативного микроскопа. Нужен любой телефон с камерой, лучше без автоматического фокуса. Дополнительно понадобится линза от маленькой лазерной указки. Она обычно небольшая, редко превышает 6 мм
Важно не поцарапать
Фиксируем изъятую линзу на глазке фотокамеры выпуклой стороной наружу. Прижимаем пинцетом, расправляем, можно по краям сделать оправу из кусочка фольги. Она удержит маленькое стеклышко. Наводим камеру с линзой на предмет, смотрим на экран телефона. Можно просто наблюдать или сделать электронный снимок.
Если на данный момент нет под рукой лазерной указки, то таким же способом можно использовать прицел от детской игрушки с лазерным лучом, нужно само стеклышко.
Микроскоп из веб-камеры
Подробная инструкция изготовления USB-микроскопа из веб-камеры. Можно использовать самую простую и старую модель, но это будет влиять на качество изображения.
Дополнительно нужна оптика из прицела от детского оружия или другой подобной игрушки, трубка для втулки и другие подручные мелочи. Для подсветки будут использоваться LED-светодиоды, вынутые из старой матрицы ноутбука.
Делаем микроскоп из веб-камеры своими руками:
- Подготовка. Разбираем камеру, оставляем пиксельную матрицу. Оптику снимаем. Вместо нее на этом месте фиксируем бронзовую втулку. Она должна совпадать по размеру с новой оптикой, можно выточить из трубки на токарном станке.
- Новую оптику от прицела нужно закрепить в изготовленной втулке. Для этого просверливаем два отверстия примерно по 1,5мм, сразу же делаем на них резьбу.
- Втыкаем болтики, которые должны пойти по резьбе и совпасть размером. Благодаря вкручиванию можно будет регулировать расстояние фокуса. Для удобства на болтики можно надеть бусинки или шарики.
- Подсветка. Используем стеклотекстолит. Лучше брать двухсторонний. Делаем кольцо подходящего размера.
- Для светодиодов и резисторов нужно вырезать небольшие дорожки. Спаиваем.
- Устанавливаем подсветку. Для фиксации нужна гайка с резьбой, размер равен внутренней стороне изготовленного кольца. Припаять.
- Обеспечиваем питание. Для этого из провода, который будет соединять бывшую камеру и компьютер, выводим два провода +5V и -5V. После чего оптическую часть можно считать готовой.
Можно поступить более простым способом и изготовить автономную подсветку из газовой зажигалки с фонариком. Но, когда это все работает от разных источников, получается загроможденная конструкция.
Для усовершенствования домашнего микроскопа можно соорудить подвижной механизм. Для него отлично подойдет старый флопповод. Это когда-то используемое устройство для дискет. Его нужно разобрать, вынуть устройство, которое двигало считывающую головку.
По желанию делаем специальный рабочий столик из пластика, оргстекла или другого подручного материала. Нелишним будет штатив с креплением, который облегчит использование самодельного прибора. Здесь можно включить фантазию.
Встречаются и другие инструкции, схемы, как сделать микроскоп. Но чаще всего в основе вышеперечисленные способы. Они могут лишь незначительно отличаться, в зависимости от наличия или отсутствия ключевых деталей. Но, голь на выдумки хитра, всегда можно придумать что-то свое и блеснуть оригинальностью.
Популярные статьи Как своими руками сделать многоярусную грядку для клубники: выбор материала и схема
Как выбрать микроскоп
Чтобы выбрать надлежащее устройство, необходимо сделать акцент на следующих критериях:
- Назначение. Нужно определиться с задачами, которые ставятся перед прибором. Либо это приспособление, которое предназначено для развития подростка, либо это микроскоп, предназначаемый для серьезных профессиональных задач.
- Окуляр и объектив. Важными элементами в любом подобном изделии станут окуляр и объектив. Когда окуляр является системой линз, которые установлены вверху тубуса, то объектив – те же линзы, находящиеся перед исследуемым предметом. Окуляры зачастую меняют на видеоокуляры либо камеры, что даст возможность провести диагностику с передачей на крупный монитор. В современных изделиях присутствует несколько объективов с различным увеличением, перестановка будет происходить быстро ввиду револьверного механизма.
- Подсветка. В целях тщательного анализа небольших предметов понадобится надлежащая подсветка. Дневное освещение не во всех случаях позволяет получить качественное изображение. Потому разработчики устанавливают верхнее либо комбинированное освещение. От его мощности часто зависит производительность.
- Увеличение. Определяют произведением зума окуляра и объектива. Когда в окуляре 10-кратное увеличение, а в объективе – 40 крат, то увеличение в микроскопе равняется 400х. В целях учебы достаточно величины 800х, для клинической диагностики – 1600х.
- Камера. В цифровых микроскопах также присутствует камера. Для получения четкой видео- либо фотокартинки, требуется сделать акцент на разрешении камеры. Оптимально работают приспособления с высококачественным HD-разрешением.
Платформа для телефона
Чтобы получить четкое представление об образце, нам нужно, чтобы вся установка была устойчивой. Для этого мы используем медный лист, чтобы он соответствовал смартфону. Размеры листа будут всего на 2 мм больше, чем у смартфона по длине и ширине
Теперь у нас есть платформа, которая подходит для нашего смартфона. Следующий шаг — сделать отверстия для объектива и четыре винта. Перед этим я должен кое-что рассказать о дизайне. Для держателя телефона требуется механизм, позволяющий идеально сфокусировать установку на наблюдаемом образце. Для этого я буду использовать четыре винта, которые позволят изменить расстояние между линзой и образцом. Эти винты будут размещены в четырех углах платы держателя. При сверлении отверстия для камеры уделите время и отметьте точку, где находится камера.
После сверления отверстий самое время поместить четыре гайки болтов в углы. С помощью сильного клея поместите их идеально выровненными. Следите за тем, чтобы клей не пролился на резьбу винтов.
После установки четырех гаек самое время разместить линзу. Перед установкой линзы очистите неровные края просверленного отверстия. Затем поместите линзу на просверленное отверстие. 2 мм отверстие идеально облегают линзу и она не падает. Затем приклейте линзу небольшим количеством клея. Это очень сложная часть. Будьте осторожны, любое крошечное смещение может привести к ложному результату. Подставка для телефона готова!