Что такое tpv? (552 просмотров)

Содержание

Присадки против конденсации полимеров

Полимеры, такие как нейлоны, ацетали и сложные полиэфиры, получают путем конденсации или ступенчатой ​​полимеризации, где небольшие молекулы (мономеры) двух разных химических веществ объединяются, образуя цепочки чередующихся химических групп. Длина молекул определяется количеством активных концов цепи, доступных для реакции с большим количеством мономера или активными концами других молекул.Полимеры, такие как полиэтилен, полистирол, акрил и поливинилхлорид, получают аддитивной или цепной полимеризацией, где используется только один вид мономеров. Реакция начинается с инициатора, который активирует молекулы мономера, разрывая двойную связь между атомами и создавая два сайта связывания. Эти сайты быстро реагируют с сайтами на других молекулах мономера или полимера. Процесс продолжается до тех пор, пока инициатор не израсходован и реакция не остановится. Длина молекул определяется количеством мономерных молекул, которые могут присоединиться к цепи до того, как инициатор израсходован, и все молекулы с инициированными сайтами связывания прореагировали.

Полистирол

Продукт полимеризации стирола при 70 С в присутствии катализаторов:

Полистирол -твердый, жесткий, прозрачный, аморфный полимер. Удобен для механической обработки, хорошо окрашивается, растворим в бензоле. Недостатками являются невысокая теплостойкость, склонность к старению, образованию трещин. Набухает в бензине. Стоек к действию щелочей, солей, низших спиртов, минеральных масел. Полистирол марки Д имеет плотность 1,05 г/см3, массу 106, σв = 35…40 МПа, d = 0,6 %. Очень хрупкий, но имеет исключительно высокие диэлектрические свойства и полную влагостойкость.

Ударопрочный полистирол представляет собой блоксополимер стирола с каучуком (УПС). Он имеет в 3…5 раз более высокую ударную вязкость и в 10 раз более высокое относительное удлинение по сравнению с обычным полистиролом. Используется в основном в электротехнике для изготовления электроизоляции, сосудов для воды и химикатов, труб и др.

Свойства и применение

Термопластичными называют полимеры, которые при нагревании переходят из твердого состояния в мягкое, тягучее, а при охлаждении снова принимают твердую форму. Данные элементы получают реакцией полимеризации. Эта реакция проходит под большим давлением и без применения примесей. Реакция полимеризации стала возможна только благодаря современной химии и специализированной аппаратуре. Получить данный процесс в естественных условиях невозможно.

Свойства термопластичных полимеров вызваны способом соединения мономеров – соединение осуществляется в одном месте, в одном направлении. Другими словами, молекулы соединены между собой в линию при линейном виде, и в виде нескольких линий, сплетенных в паутину, при разветвленной структуре.

Термопластичные полимеры хорошо плавятся, а также растворяются в реагентах и растворителях. При испарении растворителя материал твердеет и приобретает прежние свойства. Это качество применяется при производстве различных клеев, лаков, красок, герметиков, замазок и других строительных растворов, имеющих в своем составе полимеры.

Из термопластичных полимеров выделяют:

  • полиолефины;
  • полиамиды;
  • поливинилхлориды;
  • фторопласты;
  • полиуретаны;
  • поликарбонаты;
  • полиметилметакрилаты;
  • полистирол.

На основании полимеров, исходных веществ и способов обработки выделяют следующие окончательные продуты:

Самое широкое применение термопластичные полимеры получили в строительстве при изготовлении материалов для изоляции, органических стекол, пленок и покрытий различной плотности и толщины, тонких волокон, а также в качестве связующих основ для клеев, штукатурок и теплоизоляционных материалов.

Из полимеров изготавливают бутылки и различные по форме сосуды, тару, трубы, детали машин оргтехники, компьютеров и электронного оборудования. А также используют при производстве напольного покрытия — линолеума, плитки, плинтусов, отделочных декоративных пленок, настенных панелей и пластика.

Сварка горячим воздухом (горячим газом)

Термин «сварка горячим газом» имеет историческое происхождение.

В самом начале, когда способы обработки пластиков только разрабатывались, воздух в сварочных аппаратах действительно подогревался при помощи газовой горелки. Подобный способ сварки нельзя было назвать безопасным или практичным. Со временем появились аппараты с электрическим подогревом, которые позволяли регулировать температуру воздуха.

Однако, обозначение «сварка горячим газом» осталось.

Сварка термопластов состоит из следующих этапов:

Подготовка поверхности свариваемых деталей,

Разогрев зон сварки,

Сварка деталей,

Охлаждение сварочного шва (сваренные детали находятся под давлением),

Освобождение сваренных деталей от давления,

Обработка сварочного шва

 Качество сварочного шва выражается валентным соотношением. Под валентным соотношением понимается соотношение прочности сварочного шва и прочности основного материала. Как правило, удовлетворительным считается валентное соотношение от 0,6 до 0,8.  Это означает, что прочность шва составляет 60-80% от прочности основного материала. Однако хороший сварщик достигает более высоких значений, до 100% в зависимости от свариваемого материала.

Полипропилен

Другим известным термопластом является полипропилен, который создаётся путём полимеризации соответствующего газа при помощи растворителей. Во время синтеза полипропилен способен образовывать сразу несколько отличающихся по структурным формулам полимеров: изотактические, атактические, а также синдиотактические. Тактичностью называют способ установки боковых групп относительно основных в молекулярных цепях полимерного материала. Чаще всего можно встретить именно изотактические полипропиленовые соединения, в которых каждая метальная группа располагается с одной стороны в макромолекуле.

Одним из главных отличий от полиэтилена является повышенная твёрдость и прочность, а также более высокая температура размягчения, достигающая 170 градусов Цельсия. Однако этот материал менее стоек к отрицательным температурам, и становится хрупким уже при 20 градусах по Цельсию ниже нуля. Плотность его практически одинакова с полиэтиленом – 930 кг/м3, а прочность при растяжении доходит до 30 МПа. Полипропилен применяется там же, где полиэтилен, но изделия из этого полимера отличаются устойчивой формой и высокой жесткостью.

Атактическим полипропиленом называют подвид этого материала, в котором каждая метальная группа расположена случайным образом с двух сторон цепи общей молекулы. Во время синтеза пропилена является неизбежной примесью, однако его легко отделить при помощи экстракции. АПП представляет собой более мягкий и менее плотный продукт, температура плавления которого находится в пределах 30-80 градусов, что позволяет расплавить его буквально в человеческой руке. Применение ему нашли в качестве модификатора битумной композиции при создании кровельного материала.

Синдиотактический полипропилен получают с использование специальных металлоценовых катализаторов. Он представляет собой полимер, в котором метальные группы, так же как и в АПП, располагаются по обеим сторонам основной цепи, однако делают это более упорядоченно. Большинство физических свойств данного полимера схожи с резиной, потому его часто применяют в качестве эластомера.

Термопласты с частичной кристаллизацией

Данный тип полимерных материалов имеет в составе как участки с определенной структурой, так и неструктурированные

. Структурированные участки макромолекул имеют название кристаллитов и в них плотность молекулярной структуры больше, чем в аморфных частях, так же как и сила физического соединения. К примеру, такой симметричной и длинной молекулярной цепью обладает полиэтилен с высокой плотностью. Чем больше будет кристаллизованных участков в полимере, тем менее прозрачным он будет. Для частично кристаллизованных термопластов температура эксплуатации обычно выше, чем значение стеклования, но переход в расплавленное состояние происходит очень резко без стадии повышенной эластичности. При остывании материал так же быстро застывает, но при этом количество участков с кристаллизацией увеличивается, поэтому он сильно деформируется и усаживается.

Свойства термопластичных полимеров в значительной степени зависит от длины молуекулы, химической структуры сегментов, уровня кристаллизации и взаимодействия молекул.

https://youtube.com/watch?v=u4tYVQNYvVQ

Классификация и свойства полимерных материалов

Полимерные материалы в зависимости от состава или количества компонентов подразделяются на ненаполненные, представленные только одним связующим (полимером) – органическое стекло, в большинстве случаев полиэтиленовая пленка; наполненные, в состав которых для получения требуемого комплекса свойств могут входить наполнители, пластификаторы, стабилизаторы, отвердители, пигменты – стеклопластики, текстолит, линолеум и газонаполненные (пено- и поропласты) – пенополистирол, пенополиуретан и др.

В зависимости от физического состояния при нормальной температуре и вязкоупругих свойств полимерные материалы бывают жесткие, полужесткие, мягкие и эластичные.

Жесткие – это твердые, упругие материалы аморфной структуры, имеющие модуль упругости более 1000 МПа. Они хрупко разрушаются с незначительным удлинением при разрыве. К ним относят фенопласты, аминопласты, пластмассы на основе глифталевых и других полимеров.

Плотность полимерных материалов чаще всего находится в пределах 900.1800 кг/м3, т.е. они в 2 раза легче алюминия и в 5.6 раз легче стали. Вместе с тем плотность пористых полимерных материалов (пенопластов) может составлять 30..15 кг/м3, а плотных – превышать 2 000 кг/м3.

Прочность при сжатии полимерных материалов в большинстве случаев превосходит многие традиционные строительные материалы (бетон, кирпич, древесину) и составляет для ненаполненных полимеров около 70 МПа, армированных пластиков – более 200 МПа, при растяжении – для материалов с порошкообразным наполнителем 100.150 МПа, у стекловолокнистых – 276.414 МПа и более.

Теплопроводность таких материалов зависит от их пористости и технологии производства. У пено- и поропластов она составляет 0,03.0,04 Вт/м-К, у остальных – 0,2.0,7 Вт/мК или в 500.600 раз ниже, чем у металлов.

Недостатком многих полимерных материалов является низкая теплостойкость. Например, у большинства из них (на основе полистирола, поливинилхлорида, полиэтилена и других полимеров) теплостойкость составляет 60.80 °С. На основе фенолоформальдегидных смол теплостойкость может достигать 200 °С и лишь на кремнийорганических полимерах – 350 °С.

Являясь углеводородными соединениями, многие полимерные материалы сгораемы или имеют низкую огнестойкость. К легковоспламеняемым и сгораемым с обильным выделением сажи относятся изделия на основе полиэтилена, полистирола, производных целлюлозы. Трудно сгораемыми являются изделия на основе поливинилхлорида, полиэфирные стеклопластики, фенопласты, которые при повышенной температуре лишь обугливаются. Негорючими являются полимерные материалы с большим содержанием хлора, фтора или кремния.

Многие полимерные материалы при переработке, горении и даже нагревании выделяют опасные для здоровья вещества, такие как угарный газ, фенол, формальдегид, фосген, соляную кислоту и др. Значительным недостаткам их является также высокий коэффициент термического расширения – от 2 до 10 раз выше, чем у стали.

Полимерным материалам свойственна усадка при затвердевании, достигающая 5.8 %. У большей части из них низкий модуль упругости, значительно ниже, чем у металлов. При длительных нагрузках они обладают большой ползучестью. С повышением температуры ползучесть еще больше возрастает, что приводит к нежелательным деформациям.

Компонентный состав

Исходя из структуры типового полимера, пластмассами называются химические вещества, образующиеся в результате устойчивого слияния нескольких органических групп.

Все полимерные цепи основаны на углеводородах — молекулах, построенных из атомов водорода и углерода. Они получаются из нефти, природного газа или угля. Сырая нефть представляет собой густую вязкую смесь, содержащую тысячи различных углеводородов, которые необходимо отделить, прежде чем мы сможем её использовать. Это происходит на нефтеперерабатывающем заводе с помощью процесса, называемого фракционной перегонкой.

Данный процес является более сложной версией дистилляции, которая используется для очистки воды. Если мы нагреем воду, она в конечном итоге превратится в пар, который мы можем собрать, охладить и снова конденсировать в высокоочищенную или «дистиллированную» воду. Аналогичным образом производится очистка и перегонка сырой нефти. Все те углеводороды, которые она содержит, имеют молекулы разного размера и веса, поэтому они кипят и конденсируются при разных температурах.

Сбор и дистилляция различных частей сырой нефти при разных температурах даёт набор относительно простых смесей углеводородов, называемых фракциями, которые затем используются для изготовления различных типов пластмасс.

Полученные таким образом углеводороды являются сырьём для проведения реакций полимеризации, в результате которых образуются полимеры. Некоторые полимеры получают путём скрепления углеводородных мономеров вместе. Такой процесс называется аддитивной полимеризацией. Другие образуются путем соединения двух небольших углеводородных цепей и удаления молекулы воды. В результате создаётся более крупная углеводородная цепь. А сам процесс известен как конденсационная полимеризация.

Для ускорения полимеризации необходимо использовать определённые химические вещества, называемые катализаторами. Катализаторы — это вещества, которые повышают вероятность протекания химической реакции. Хотя они могут временно изменяться во время реакции, они снова появляются при её завершении конце в своей первоначальной форме; другими словами, они не меняются навсегда по мере того, как происходит реакция.

Поскольку эксплуатационные требования к пластмассам меняются, то часто приходится добавлять к основным углеводородам другие ингредиенты, чтобы получить полимер с точно правильными химическими и физическими свойствами. Эти дополнительные ингредиенты включают:

  • Красители (которые, как следует из названия, изменяют цвет пластика);
  • Пластификаторы (которые делают пластик более гибким, вязким, пластичным);
  • Стабилизаторы (чтобы пластмассы не разламывались под воздействием внешних факторов – света, давления, температуры);
  • Наполнители (обычно недорогие минералы, позволяющие экономить дорогостоящие углеводороды без ущерба для эксплуатационных характеристик конечного продукта).

Полиэтилен

Полиэтилен представляет собой прозрачный материал и считается самым распространенным полимером. Этот материал отличает высокая влагостойкость и газонепроницаемость. Он не пропускает воду, устойчив к кислотам, щелочам, солям и другим агрессивным элементам, хороший диэлектрик. Эластичность полиэтилена сохраняется даже при отрицательной температуре окружающей среды до отметки -70С градусов. Считается очень прочным и стойким материалом. Полиэтилен легко режется ножом, а при взаимодействии с огнем горит и одновременно плавится. К недостаткам также можно отнести слабую адгезию с минеральными соединениями и клеями, подверженность старению при попадании солнечного света и агрессивным факторам окружающей среды. При данных отрицательных фактах полиэтилен не теряет своих основных эксплуатационных свойств.

При изготовлении полиэтилена применяются термопластичные полимеры одного вида, а в результате различных обработок, получают совершенно различные по характеристикам типы полиэтилена. В зависимости от видов полимеризации различают три вида полиэтилена:

  1. Полиэтилен низкой плотности, получаемый при использовании высокого давления. Структура данного полимера имеет разветвленный вид, что обуславливает ее невысокую плотность и прочность, представляет собой мягкий и эластичный материал. Полиэтилен низкой плотности используется для изготовления пакетов для хранения пищевых продуктов, отходов и одежды, других упаковочных материалов. Из него изготавливают небьющеюся химическую посуду для лабораторий.
  2. Полиэтилен, производимый при среднем давлении и плотности. Получается при давлении в 5-40 атмосфер и температуре 130-140С. Также используется для изготовления упаковочных материалов большей плотности, не дорогой посуды, различный контейнеров и форм для пищевых и не пищевых продуктов.
  3. Материал, получаемый при низком давлении, и имеющий высокую плотность. Обладает улучшенной механической прочностью по сравнению с двумя другими видами полиэтилена. Изготавливается под давлением 5 атмосфер и при температуре +70С градусов. Из данного вида полиэтилена изготавливают пакеты, игрушки для детей, посуду, а также формы для воды и сыпучих продуктов, миски, тазики и прочую хозяйскую утварь. Также изготавливают водопроводные трубы, медицинские шприцы, детали механизмов, шланги, фитинги поливочных систем. С применением литья изготавливают вентили, краны, задвижки, зубчатые колеса, шестерни.

Компоненты, входящие в состав пластмасс

В большинстве своем пластмассы состоят из смолы, а также наполнителя, пластификатора, стабилизатора, красителя и других добавок, улучшающих технологические и эксплуатационные свойства пластмассы. Свойства полимеров могут быть в значительной степени улучшены и изменены, в зависимости от требований, предъявляемых различными отраслями техники, с помощью различных составляющих пластмассы.

Наполнители служат для улучшения физико-механических, диэлектрических, фрикционных или антифрикционных свойств, повышения теплостойкости, уменьшения усадки, а также для снижения стоимости пластмасс. По массе содержание наполнителей в пластмассах составляет от 40 до 70 %. Наполнителями могут быть ткани, а также порошкообразные и волокнистые вещества.

Пластификаторы увеличивают пластичность и текучесть пластмасс, улучшают морозостойкость. В качестве пластификаторов применяют дибутилфталат, трикрезилфосфат и др. Их содержание колеблется в пределах 10 – 20 %.

Стабилизаторы – вещества, предотвращающие разложение полимерных материалов во время их переработки и эксплуатации под воздействием света, влажности, повышенных температур и других факторов. Для стабилизации используют ароматические амины, фенолы, сернистые соединения, газовую сажу.

Красители добавляют для окрашивания пластических масс. Применяют как минеральные красители (мумия, охра, умбра, литопон, крон и т. д.), так и органические (нигрозин, родамин).

Смазочные вещества – стеарин, олеиновая кислота, трансформаторное масло – снижают вязкость композиции и предотвращают прилипание материала к стенкам пресс-формы.

Это интересно: Температура плавления свинца в градусах по Цельсию — выкладываем суть

Полиэтилен

Полиэтилен представляет собой прозрачный материал и считается самым распространенным полимером. Этот материал отличает высокая влагостойкость и газонепроницаемость. Он не пропускает воду, устойчив к кислотам, щелочам, солям и другим агрессивным элементам, хороший диэлектрик. Эластичность полиэтилена сохраняется даже при отрицательной температуре окружающей среды до отметки -70С градусов. Считается очень прочным и стойким материалом. Полиэтилен легко режется ножом, а при взаимодействии с огнем горит и одновременно плавится. К недостаткам также можно отнести слабую адгезию с минеральными соединениями и клеями, подверженность старению при попадании солнечного света и агрессивным факторам окружающей среды. При данных отрицательных фактах полиэтилен не теряет своих основных эксплуатационных свойств.

При изготовлении полиэтилена применяются термопластичные полимеры одного вида, а в результате различных обработок, получают совершенно различные по характеристикам типы полиэтилена. В зависимости от видов полимеризации различают три вида полиэтилена:

  1. Полиэтилен низкой плотности, получаемый при использовании высокого давления. Структура данного полимера имеет разветвленный вид, что обуславливает ее невысокую плотность и прочность, представляет собой мягкий и эластичный материал. Полиэтилен низкой плотности используется для изготовления пакетов для хранения пищевых продуктов, отходов и одежды, других упаковочных материалов. Из него изготавливают небьющеюся химическую посуду для лабораторий.
  2. Полиэтилен, производимый при среднем давлении и плотности. Получается при давлении в 5-40 атмосфер и температуре 130-140С. Также используется для изготовления упаковочных материалов большей плотности, не дорогой посуды, различный контейнеров и форм для пищевых и не пищевых продуктов.
  3. Материал, получаемый при низком давлении, и имеющий высокую плотность. Обладает улучшенной механической прочностью по сравнению с двумя другими видами полиэтилена. Изготавливается под давлением 5 атмосфер и при температуре +70С градусов. Из данного вида полиэтилена изготавливают пакеты, игрушки для детей, посуду, а также формы для воды и сыпучих продуктов, миски, тазики и прочую хозяйскую утварь. Также изготавливают водопроводные трубы, медицинские шприцы, детали механизмов, шланги, фитинги поливочных систем. С применением литья изготавливают вентили, краны, задвижки, зубчатые колеса, шестерни.

Читать также: Станок для сшивания уголовных дел

Окантовка

Когда возникает необходимость изготовить держатели, уголки и U-образный профиль, можно воспользоваться методом угловой сварки, но для некрупных предметов (шириной до 60 см), мы рекомендуем применять окантовку.

Прежде чем приступить к сварке, в детали под углом 90° при помощи фрезы протачивается паз. Глубина паза меньше толщины материала на 2-3 мм. После этого паз следует очистить от стружек и зафиксировать деталь на подложке.

Сварка производится аппаратом без насадки. Поток горячего воздуха медленно и равномерно направляется вдоль паза, от начала к концу

После того, как стенки паза размягчатся (проверить это можно при помощи любого заостренного предмета, например, гвоздя), незакрепленный конец детали осторожно отгибается в нужную позицию и придерживается до той поры, пока шов не застынет.  При этом в месте стыка возникает небольшое утолщение

Производство дорожных работ

Разметка дорог термопластиком может выполняться: с применением механизированной техники; вручную при помощи специального инструмента.

Термопластик представляет собой светло-серую смесь, в состав которой входят минеральные добавки, красители, связующие вещества. Материал засыпают в специальный котел, где он разогревается до 220 градусов. Перегревать смесь запрещается. Действие высокой температуры негативно повлияет на характеристики готового продукта. После того как температура термопластика достигнет оптимального значения, материал заливают в разметочную технику. Попадая на сухое асфальтное покрытие, материал остывает, образуя прочный, хорошо заметный слой ярко белого оттенка.

Цены на нанесение разметки термопластиком

Во всех городах и на основных магистралях в настоящее время разметка проезжей части нанесена горячим пластиком. Применение термопластика на автодорогах страны увеличило видимость разметки долговечность и безопастность на проезжей части.

ГОСТ Р 51256-99 Разметка дорожная. Таблица цен на разметку термопластиком.

Наименование

Стоимость
от 100 до 1000 пог. м. от 5000 до 10000 пог. м. Выезд специалиста, консультирование, предварительная смета бесплатно
Сплошная линия продольной разметки
пог. м. 250 145 Пунктирная линия продольной разметки
пог. м. 250 145 Поперечная линия дорожной разметки
пог. м. 250 145 Вертикальная дорожная разметка
термопластик 350 170 60
шт. Цветные покрытия противоскольжения
м² площадки 1600
шт.

Эффективная разметка термопластиком производится линиями, толщина которых после обработки не превышает 4 мм. Светоотражающий материал насыпают сверху свеженанесенного термопластика. В качестве светоотражающих компонентов используют стеклошарики небольшого размера. Их обрабатывают специальным веществом для придания водоотталкивающих свойств. По завершении работ смесь следует полностью удалить из раздаточной техники.

предлагает услуги по разметке термопластиком дорожного покрытия, пешеходных переходов, площадок. Клиентам гарантируют бесплатный выезд специалиста на место проведения работ, предоставление подробных консультаций, составление предварительной сметы. По индивидуальному заказу сотрудники подготовят проект нанесения разметки для эффективной организации дорожного движения. Также компания предлагает цветные покрытия противоскольжения по выгодной для клиента стоимости.