Что такое «уровень моря» и чему он равен?

Основные системы высот над уровнем моря

  1. Динамическая высота (перевод разности потенциалов на линейную меру делением на постоянную величину, близкую к средней силе тяжести, например, среднее значение нормальной силы тяжести на широте 45°). Динамические высоты удобно применять вблизи одной и той же уровенной поверхности замкнутого водоёма или гидротехнического сооружения, в этом случае измеренные превышения не будут отличаться от соответствующей разности динамических высот. Применение динамических высот для решения геодезических задач неудобно, поскольку потребуется вводить поправку за переход к динамическим даже в линии нивелирования низкой точности.
  2. Ортометрическая высота (отрезок силовой линии реального поля силы тяжести от геоида Брунса до точки земной поверхности; разность потенциалов переводится в линейную меру делением на среднее интегральное значение реальной силы тяжести вдоль этого отрезка). Приращения ортометрической высоты по вертикали в точности равны приращению длины.
  3. Нормальная высота (отрезок силовой линии нормального поля силы тяжести от поверхности уровенного эллипсоида вверх до точки, в которой разность нормального потенциала равна разности реального потенциала; разность потенциалов переводится в линейную меру делением на величину среднего интегрального значения нормальной силы тяжести вдоль этого отрезка). Отметки нормальных высот, хотя и в общем случае непостоянны для одной и той же уровенной поверхности, лучше характеризуют уровенные поверхности с разными потенциалами, чем ортометрические. Приращения нормальной высоты по вертикали не равны приращению длины и соответствуют затуханию аномального гравитационного поля с высотой.
  4. Нормально-ортометрическая высота (отрезок силовой линии нормального поля силы тяжести от земной поверхности вниз до точки, в которой разность нормального потенциала равна разности реального потенциала; разность потенциалов переводится в линейную меру делением на величину среднего интегрального значения нормальной силы тяжести вдоль этого отрезка).

Температура кипения воды в зависимости от высоты над уровнем моря. Таблица от -305 до 9144 м, в °C и °F

Высота над уровнем моря Температура кипения
Футов (ft) Метров (м, m) По Фаренгейту (oF)  По Цельсию (oC)
-1000 -305 213.9 101.1
-750 -229 213.5 100.8
-500 -152 213.0 100.5
-250 -76 212.5 100.3
212.0 100.0
250 76 211.5 99.7
500 152 211.0 99.5
750 229 210.5 99.2
1000 305 210.1 98.9
1250 381 209.6 98.6
1500 457 209.1 98.4
1750 533 208.6 98.1
2000 610 208.1 97.8
2250 686 207.6 97.6
2500 762 207.2 97.3
2750 838 206.7 97.1
3000 914 206.2 96.8
3250 991 205.7 96.5
3500 1067 205.3 96.3
3750 1143 204.8 96.0
4000 1219 204.3 95.7
4250 1295 203.8 95.5
4500 1372 203.4 95.2
4750 1448 202.9 94.9
5000 1524 202.4 94.7
Высота над уровнем моря Температура кипения
Футов (ft) Метров (м, m) По Фаренгейту (oF)  По Цельсию (oC)
5250 1600 202.0 94.4
5500 1676 201.5 94.2
5750 1753 201.0 93.9
6000 1829 200.6 93.6
6250 1905 200.1 93.4
6500 1981 199.6 93.1
6750 2057 199.2 92.9
7000 2134 198.7 92.6
7250 2210 198.2 92.4
7500 2286 197.8 92.1
7750 2362 197.3 91.8
8000 2438 196.9 91.6
8250 2515 196.4 91.3
8500 2591 196.0 91.1
8750 2667 195.5 90.8
9000 2743 195.0 90.6
9250 2819 194.6 90.3
9500 2896 194.1 90.1
9750 2972 193.7 89.8
10000 3048 193.2 89.6
Высота над уровнем моря Температура кипения
Футов (ft) Метров (м, m) По Фаренгейту (oF)  По Цельсию (oC)
10250 3124 192.8 89.3
10500 3200 192.3 89.1
10750 3277 191.9 88.8
11000 3353 191.4 88.6
11250 3429 191.0 88.3
11500 3505 190.5 88.1
11750 3581 190.1 87.8
12000 3658 189.7 87.6
12250 3734 189.2 87.3
12500 3810 188.8 87.1
12750 3886 188.3 86.8
13000 3962 187.9 86.6
13250 4037 187.4 86.4
13500 4115 187.0 86.1
13750 4191 186.6 85.9
14000 4267 186.1 85.6
14250 4343 185.7 85.4
14500 4420 185.3 85.1
14750 4496 184.8 84.9
15000 4572 184.4 84.7
Высота над уровнем моря Температура кипения
Футов (ft) Метров (м, m) По Фаренгейту (oF)  По Цельсию (oC)
15250 4648 184.0 84.4
15500 4724 183.5 84.2
15750 4801 183.1 83.9
16000 4877 182.7 83.7
16250 4953 182.2 83.5
16500 5029 181.8 83.2
16750 5105 181.4 83.0
17000 5182 180.9 82.7
17250 5258 180.5 82.5
17500 5334 180.1 82.3
17750 5410 179.7 82.0
18000 5486 179.2 81.8
18250 5563 178.8 81.6
18500 5639 178.4 81.3
18750 5715 178.0 81.1
19000 5791 177.6 80.9
19250 5867 177.1 80.6
19500 5944 176.7 80.4
19750 6020 176.3 80.2
20000 6096 175.9 79.9
Высота над уровнем моря Температура кипения
Футов (ft) Метров (м, m) По Фаренгейту (oF)  По Цельсию (oC)
20250 6172 175.5 79.7
20500 6248 175.1 79.5
20750 6325 174.7 79.3
21000 6401 174.2 79.0
21250 6477 173.8 78.8
21500 6553 173.4 78.6
21750 6629 173.0 78.3
22000 6706 172.6 78.1
22250 6782 172.2 77.9
22500 6858 171.8 77.7
22750 6934 171.4 77.4
23000 7010 171.0 77.2
23250 7087 170.6 77.0
23500 7163 170.2 76.8
23750 7239 169.8 76.5
24000 7315 169.4 76.3
24250 7391 169.0 76.1
24500 7468 168.6 75.9
24750 7544 168.2 75.6
25000 7620 167.8 75.4
Высота над уровнем моря Температура кипения
Футов (ft) Метров (м, m) По Фаренгейту (oF)  По Цельсию (oC)
25250 7696 167.4 75.2
25500 7772 167.0 75.0
25750 7849 166.6 74.8
26000 7925 166.2 74.5
26250 8001 165.8 74.3
26500 8077 165.4 74.1
26750 8153 165.0 73.9
27000 8230 164.6 73.7
27250 8306 164.2 73.5
27500 8382 163.8 73.2
27750 8458 163.4 73.0
28000 8534 163.1 72.8
28250 8611 162.7 72.6
28500 8687 162.3 72.4
28750 8763 161.9 72.2
29000 8839 161.5 72.0
29250 8916 161.1 71.7
29500 8992 160.7 71.5
29750 9068 160.4 71.3
30000 9144 160.0 71.1
Высота над уровнем моря Температура кипения
Футов (ft) Метров (м, m) По Фаренгейту (oF)  По Цельсию (oC)

Например: Температура кипения воды на Эвересте (Джомолунгме):  Выстота 8848 м, т.е. температура кипения примерно 72oC (161.5 oF)

Примечания

  1. Болотов А. П. Геодезия или руководство к исследованию общего вида Земли, построению карт и производству тригонометрической и топографической съемок и нивелировок. Часть II: проекции карт, нивелирование, топография.. — СПб.: К. Вингебер, 1837. — 445 с.
  2. Puissant L. Traité de géodésie ou exposition des méthodes astronomiques et trigonométriques, appliquées soit à la mesure de la terre, soit à la confection du canevas des cartes et des plans. — 1. — Paris: Courcier, 1807. — С. 230.
  3. Puissant L. Traité de géodésie ou exposition des méthodes astronomiques et trigonométriques, appliquées soit à la mesure de la terre, soit à la confection du canevas des cartes et des plans. — 2. — Paris: Courcier, 1819. — С. 350.
  4. Puissant L. Traité de topographie, d’arpentage et de nivellement. — Paris: Courcier, 1807. — 332 с.
  5. Laplace Pierre-Simon. Traité de Mécanique céleste, t. 4. — 1. — Paris: L’Imprimerie Royale, 1805.
  6. Wand Th. Die Principien der mathematischen Physik und Potentialtheorie. — Leipzig: B. G. Teubner, 1871. — 184 с.
  7. Молоденский М. С. Основные вопросы геодезической гравиметрии. — Труды ЦНИИГАиК, вып. 42. — Москва: Геодезиздат, 1945. — 108 с.
  8. Еремеев В. Ф., Юркина М. И. Теория высот в гравитационном поле Земли. — Труды ЦНИИГАиК, вып. 191. — Москва: Недра, 1972. — 144 с.

Основные системы высот над уровнем моря[править | править код]

  1. Динамическая высота (перевод разности потенциалов на линейную меру делением на постоянную величину, близкую к средней силе тяжести, например, среднее значение нормальной силы тяжести на широте 45°). Динамические высоты удобно применять вблизи одной и той же уровенной поверхности замкнутого водоёма или гидротехнического сооружения, в этом случае измеренные превышения не будут отличаться от соответствующей разности динамических высот. Применение динамических высот для решения геодезических задач неудобно, поскольку потребуется вводить поправку за переход к динамическим даже в линии нивелирования низкой точности.
  2. Ортометрическая высота (отрезок силовой линии реального поля силы тяжести от геоида Брунса до точки земной поверхности; разность потенциалов переводится в линейную меру делением на среднее интегральное значение реальной силы тяжести вдоль этого отрезка). Приращения ортометрической высоты по вертикали в точности равны приращению длины.
  3. Нормальная высота (отрезок силовой линии нормального поля силы тяжести от поверхности уровенного эллипсоида вверх до точки, в которой разность нормального потенциала равна разности реального потенциала; разность потенциалов переводится в линейную меру делением на величину среднего интегрального значения нормальной силы тяжести вдоль этого отрезка). Отметки нормальных высот, хотя и в общем случае непостоянны для одной и той же уровенной поверхности, лучше характеризуют уровенные поверхности с разными потенциалами, чем ортометрические. Приращения нормальной высоты по вертикали не равны приращению длины и соответствуют затуханию аномального гравитационного поля с высотой.
  4. Нормально-ортометрическая высота (отрезок силовой линии нормального поля силы тяжести от земной поверхности вниз до точки, в которой разность нормального потенциала равна разности реального потенциала; разность потенциалов переводится в линейную меру делением на величину среднего интегрального значения нормальной силы тяжести вдоль этого отрезка).

История науки

Иллюстрация А. фон Гумбольдта и А. Бонплана из книги «Идеи для географии растений» вместе с естественной живописью тропических стран , Париж 1805 г.

Научное описание глобального и местного высотного зонирования началось с исследовательских поездок начала Нового времени. Высота здесь была Конрадом Гесснером первым, середина 16 века своим описанием вертикального зонирования горы Пилатус на озере Люцерн (Швейцария) прославилась. Создав структуру Анд , Александр фон Гумбольдт установил решающие стандарты для более поздних ступенчатых моделей. Главный вклад в ХХ век внес Карл Тролль .

Глобальный океанический конвейер

Превышение уровня — признак видимый, в буквальном смысле лежащий на поверхности. Но есть и другие свойства, как бы избыточные в одном океане и недостаточные в другом. Например, содержание биогенных веществ (силикатов и фосфатов) в северной части Тихого океана в 2—3 раза превышает их концентрацию в водах Северной Атлантики. Противоположная картина наблюдается в распределении растворенных карбонатов и кислорода, концентрация которых наибольшая в Атлантическом океане и постепенно уменьшается к северной части Тихого. Эти и некоторые другие подобные факты приводят к выводу о существовании межокеанского обмена свойствами в виде глобальной циркуляции, пронизывающей пространство трех океанов — от Северной Атлантики через Индийский океан до северных широт Тихого океана. По современным представлениям, такая замкнутая циркуляция существует, она состоит из поверхностного и глубинного противоположно направленных потоков, ее назвали глобальным океаническим конвейером.

Факторы изменения уровня Мирового океана.

Повсеместное превышение уровня Тихого океана свидетельствует о наличии постоянного горизонтального градиента давления, который направлен на выравнивание уровней и приведение их в равновесное состояние. Под действием этого градиента из самой «высокой» области Тихого океана через проливы индонезийских морей на юго-запад движется поток теплых вод, которые через Индийский океан, огибая южную оконечность Африки, выходят в Атлантику. Далее вдоль побережий двух Америк эти воды пересекают Атлантический океан до его северо-западного района. Там поверхностные воды из-за интенсивного испарения осолоняются и уплотняются, что приводит к их конвективному погружению. Достигнув глубин 2000—3000 м, они смешиваются с холодными водами, поступающими из Арктического бассейна, и начинают формировать глубинную, противоположно направленную ветвь глобальной циркуляции. Пересекая Атлантический океан с севера на юг, глубинные воды вливаются в Циркумполярное (Западных ветров) течение, которым увлекаются на восток вдоль берегов Антарктиды. В южной части Тихого океана перед проливом Дрейка глубинные воды поворачивают на север и, следуя в этом направлении, достигают района Алеутских островов, где, будучи менее плотными относительно местных глубинных вод, медленно поднимаются к верхним приповерхностным слоям, замыкая «конвейерную ленту».

Конвейер «в профиль»

Это движение происходит чрезвычайно медленно и никакими приборами не регистрируется. Период полного обмена водами Атлантического и Тихого океанов в потоке глобального океанического конвейера оценивается временем порядка от многих сотен до полутора тысяч лет. На всем протяжении этого длительного пути происходит медленный непрерывный обмен теплом, солями, биогенными веществами, газами с окружающими водами. Изменения, происходящие в климатической системе Земли, выражающиеся в перераспределении тепла и влаги, обострении атмосферных процессов, нарушении режимов погоды в тех или иных районах, могут отражаться на движении «конвейера» в виде изменений характеристик переносимых свойств, а также интенсивности переноса. Так, на примере глобального океанического конвейера можно заключить, что совсем небольшие, но долговременно существующие разности в положении уровня океанов способны возбуждать устойчивую циркуляцию вод и процессы межокеанского обмена свойствами, поддерживающие глобальное динамическое равновесие в Мировом океане.

Глобальный океанический конвейер «анфас». Красным показаны теплые, синим — холодные потоки.

Все мы изучали в школе географию и с термином «высота над уровнем моря» знакомы не понаслышке. Это определение можно встретить в научно-популярных телевизионных передачах, на страницах журналов, газетах и других средствах информации. Давайте рассмотрим современные способы ее определения.

Высота морской поверхности

Высота морской поверхности
(ВМП
) — это высота (или топография или рельеф) поверхности океана. В течение суток она, очевидно, наиболее подвержена влиянию приливных сил Луны и Солнца , действующих на Землю. На больших временных масштабах на ВМП влияет циркуляция океана. Обычно циркуляция океана вызывает отклонения топографии от среднего уровня максимум на ± 1 м . Самые медленные изменения ВМП происходят за счёт изменений в гравитационном поле Земли (геоид) в результате перераспределения континентов , образования подводных гор и тому подобного.

Поскольку гравитационное поле Земли относительно стабильно в масштабах десятилетий и столетий, циркуляция океана играет более значительную роль в наблюдаемой изменчивости ВМП. Сезонные изменения в распределении тепла и ветрового воздействия влияют на циркуляцию океана, а та, в свою очередь, на ВМП. Вариации ВМП могут быть измерены при помощи спутниковой альтиметрии (например, спутники TOPEX/Poseidon , Jason 1) и используются для определения, например, повышения уровня моря, расчёта содержания тепла и геострофических течений , обнаружения и изучения вихрей в океане .

Исходный пункт счёта высот

В разных странах используются различные исходные пункты счёта высот.

В России в качестве государственной системы высот используется Балтийская система нормальных высот 1977 года, определённая по результатам уравнивания измерений на пунктах государственной нивелирной сети I и II классов главной высотной основы, выполненного ГУГК СССР в 1977 году. В России и в Казахстане высоты точек земной поверхности над уровнем моря отсчитывают от среднемноголетнего уровня Балтийского моря, зафиксированного отметкой на Кронштадтском футштоке. В разных странах используются различные исходные пункты счёта высот.

Куруш. Дагестан, Россия

Высота: 2600 метров над уровнем моря

самый высокогорный город России

В селе есть интернет и сотовая связь, цивилизация докатилась и до этих мест. В остальном, Куруш – это тихий оазис размеренной жизни. Раньше, потомки древнего арабского племени, курушцы в большом количестве разводили скот. Когда руководство Азербайджанской АССР запретило им использовать свои пастбища для скота, село пришло в упадок, многие переехали в долины, но часть коренного населения осталась, сохранив старинное село до сегодняшних дней. Памятник этим людям и сегодня стоит во дворе местной школы. Не стоит путать Куруш с Новым Курушем. Тот находится в Хасаврютском районе и расположен на несколько ниже, население состоит из коренных переселенцев из села Куруш.

Дома, выстроенные из кизяка (кирпичи из навоза), тесно ютятся на горном уступе. Вокруг – горы, поросшие лесами, быстрые реки и заснеженные вершины на горизонте. Одна из вершин – Шалбуздаг, особенно почитаема в мусульманском мире. В переводе, её название означает: «Гора Бога», а её окрестности считаются священными. Говорят, поднявшись на её вершину, можно загадать заветное желание и оно обязательно сбудется. На пути к вершине есть много интересных мест: горное озеро Зам-Зам, полное форели, а также узкий горный проход, называемый в народе «Грехомер». Считается, что человек с чистыми помыслами без труда пройдёт между тесно стоящими скалами, а вот человек с тёмной душой, обязательно застрянет, независимо от своих размеров. Отправляясь в старый Куруш, стоит помнить, что местное население говорит на лезгинском наречии, а также то, что на высоте 2600 метров наступает зона кислородного голодания.

Как добраться: На самолёте или поезде до Махачкалы. Оттуда – на автомобиле по дороге Дербент-Ахты, свернуть у села Усухчай.

Примечания[править | править код]

  1. Болотов А. П. Геодезия или руководство к исследованию общего вида Земли, построению карт и производству тригонометрической и топографической съемок и нивелировок. Часть II: проекции карт, нивелирование, топография.. — СПб.: К. Вингебер, 1837. — 445 с.
  2. Puissant L. Traité de géodésie ou exposition des méthodes astronomiques et trigonométriques, appliquées soit à la mesure de la terre, soit à la confection du canevas des cartes et des plans. — 1. — Paris: Courcier, 1807. — С. 230.
  3. Puissant L. Traité de géodésie ou exposition des méthodes astronomiques et trigonométriques, appliquées soit à la mesure de la terre, soit à la confection du canevas des cartes et des plans. — 2. — Paris: Courcier, 1819. — С. 350.
  4. Puissant L. Traité de topographie, d’arpentage et de nivellement. — Paris: Courcier, 1807. — 332 с.
  5. Laplace Pierre-Simon. Traité de Mécanique céleste, t. 4. — 1. — Paris: L’Imprimerie Royale, 1805.
  6. Wand Th. Die Principien der mathematischen Physik und Potentialtheorie. — Leipzig: B. G. Teubner, 1871. — 184 с.
  7. Молоденский М. С. Основные вопросы геодезической гравиметрии. — Труды ЦНИИГАиК, вып. 42. — Москва: Геодезиздат, 1945. — 108 с.
  8. Еремеев В. Ф., Юркина М. И. Теория высот в гравитационном поле Земли. — Труды ЦНИИГАиК, вып. 191. — Москва: Недра, 1972. — 144 с.

Способы измерения уровня океана. Спутниковая альтиметрия

Схема спутниковой альтиметрии

Непрерывную регистрацию колебаний уровня выполняют на гидрометеорологических станциях, оборудованных мареографами — самописцами уровня различных типов. Конструкции большинства подобных приборов можно разделить на два типа: поплавковые и гидростатические. Поплавковый мареограф регистрирует уровень поплавка, плавающего в специальном колодце, соединенном с морем горизонтальной трубой. Колебания поплавка, подвешенного с противовесом на гибком проводе или тросе, передаются измерительному колесу, а от него на пишущее устройство, которое вычерчивает на ленте кривую колебаний уровня.

Способы установки мареографов: в колодце на берегу (а), на свайном основании (б)

В конструкции гидростатического мареографа заложен принцип хорошо известного барометра-анероида. Чувствительные датчики таких приборов, размещаемых чаще всего на дне водоемов, реагируют на колебания гидростатического давления, которые происходят при изменениях уровня моря. Датчики стационарных моделей таких мареографов устанавливаются в колодцах или на подводных конструкциях гидротехнических сооружений, а регистрирующая часть прибора размещается в будке водомерного поста. Некоторые модели гидростатических мареографов рассчитаны на автономную работу. В них измеряющая и регистрирующая части прибора монтируются в одном водонепроницаемом корпусе, и конструкция устанавливается на дне. Наблюдения за поведением уровня Мирового океана на береговых станциях и постах не могут дать полной картины его колебаний, так как ведутся только в узкой прибрежной полосе. В открытом океане, вероятно, существуют многочисленные перекосы уровня, вызываемые неравномерным распределением плотности, крупными течениями и другими подобными причинами. Измерение абсолютных отметок уровня в открытом океане стало возможным только с началом использования радиовысотомеров, устанавливаемых на искусственных спутниках Земли. Методика измерения расстояний от космического объекта до земной поверхности начала разрабатываться в 70-х годах прошлого века и получила название спутниковой альтиметрии. Спутниковые методы позволяют осуществлять постоянный мониторинг уровенной поверхности Мирового океана. Существует несколько вариантов расчета спутниковых орбит для ведения геодезических и других высотных измерений земной поверхности. Рассмотрим программу так называемой изомаршрутной спутниковой съемки, которая хорошо иллюстрирует основные принципы спутниковой альтиметрии.

Санкт-Петербург. Кронштадт. Павильон (в нем установлен мареограф) и водомерная рейка, которую справедливо назвать рейкой № 1 в стране, — Кронштадтский футшток. От «нуля» Балтийского моря ведется отсчет высот в России.

Параметры изомаршрутной орбиты спутника с радиовысотомером подбираются так, чтобы каждый очередной виток (трек) смещался относительно предыдущего на некоторую постоянную величину. Через определенное число витков (цикл) спутник выходит на маршрут первого трека, после чего весь цикл повторяется снова. В 1992 г. по программе TOPEX/Poseidon для изучения циркуляции и топографии поверхности Мирового океана на околоземную орбиту с высотой 1336 кми наклонением к плоскости экватора 66° был выведен спутник с двумя радиовысотомерами (альтиметрами). В 2001 г. на ту же орбиту выведен второй спутник этой программы, «Jason-1». Расстояние между соседними треками на экваторе равно 300 км, продолжительность одного цикла — 10 суток. За это время поверхность Земли покрывается регулярной ромбической сеткой спутниковых трасс, измерения вдоль которых повторяются около 36 раз в году.

График показывает изменение уровня океана (в мм, по вертикальной шкале) по данным спутниковой альтиметрии TOPEX/Poseidon в 90-е — начале 2000-х годов.

В спутниковой альтиметрии высота морской поверхности рассчитывается относительно поверхности геоида по измеренной высоте спутника над морем и высоте орбиты самого спутника — с учетом поправок, связанных с инструментальной точностью альтиметров, состоянием морской поверхности, прохождением сигнала через плотные слои атмосферы и некоторых других. В итоге получается средняя высота морской поверхности, которая есть расчетная величина, полученная при осреднении альтиметрических измерений одного или нескольких спутников, наиболее приближенная к невозмущенной поверхности океана. Точность таких измерений составляет около 5 см.

Сравнение высотных отметок, климатических и растительных поясов

На первый взгляд последовательность и форма растительного покрова от равнины до районов вершин демонстрируют большое сходство с глобальными зонами растительности , климат которых зависит от географической широты от экватора до полюсов. Эти зональные типы растительности относительно однородны в глобальном масштабе и обычно могут быть описаны с помощью очень крупномасштабных типов экосистем или биомов . Условия различных гор, с другой стороны, показывают четкие различия в связи с особыми климатическими различиями и их собственной ( изолированная ) племенная историей в инвентаризации видов , которые вызывают отклонение. В то время как глобальное различие проводится между бореальными хвойными лесами, гемибореальными переходными смешанными лесами и неморальными лиственными лесами, в горах встречаются специфические растительные сообщества, такие как коллинский дубово-грабовый лес , предгорный буковый лес , низкогорные пихтово-буковые леса и высокогорные леса. горный елово-пихтовый лес — использовать обязательно.


Зоны растительности и экстразональные типы растительности земли

различия

Чем дальше друг от друга климатически сопоставимые зоно- и оробиомы, тем значительнее следующие различия:

  • Суточные колебания температуры (более высокие в тропических горах, чем годовые колебания)
  • Продолжительность дня (12 часов круглый год на экваторе, от 0 до 24 часов на полюсах, в зависимости от сезона)
  • Сходства в инвентаризации видов (из — за общую племенную историю ; прерывание из — за изоляции в Ice Age убежищ , как ледниковые реликты, и т.д.)

В соответствии с этим различия между тундрой арктических равнин и горной тундрой южной Норвегии незначительны на высоте от 1000 до 1600 м, в то время как климатически сопоставимая páramo растительность тропических Анд на высоте от 3800 до 4700 м имеет совершенно разные растительные образования и растения. сообщества .

Высота горного хребта и уклон также влияют на:

  • Интенсивность излучения (увеличивается на высоте из-за более низкой плотности и облачности воздуха )

    • УФ-излучение : растения с утолщенным эпидермисом для защиты от УФ-излучения.
    • Тепловое излучение сильнее прогревает землю на солнечных склонах, слабее в тени
  • Водный баланс (особенно в основном большее количество осадков в горах и более быстрый сток)
  • Ветровые условия ( долинные и горные ветры приводят к резким перепадам температуры)
  • Солифлюкция и эрозия (особые почвенные образования, влияющие на флору)

В атмосферных исследованиях

Атмосферные слои

В атмосфере Земли разделена на несколько областей высоты. Эти регионы начинаются и заканчиваются на разной высоте в зависимости от сезона и расстояния от полюсов. Указанные ниже высоты являются средними:

  • Тропосфера : поверхность до 8000 метров (5,0 миль) на полюсах, 18000 метров (11 миль) на экваторе , заканчивается в тропопаузе.
  • Стратосфера : тропосфера до 50 километров (31 миль)
  • Мезосфера : Стратосфера до 85 километров (53 миль)
  • Термосфера : мезосфера до 675 километров (419 миль)
  • Экзосфера : термосфера до 10 000 километров (6200 миль)

Линия Кармана , расположенная на высоте 100 километров (62 миль) над уровнем моря , условно определяет границу между атмосферой и космосом . Термосфера и экзосфера (наряду с более высокими частями мезосферы) — это области атмосферы, которые условно определяются как пространство.

Большая высота и низкое давление

Области на поверхности Земли (или в ее атмосфере), которые находятся высоко над средним уровнем моря, называются высокогорными . Иногда считается, что большая высота начинается на высоте 2400 метров (8000 футов) над уровнем моря.

На большой высоте атмосферное давление ниже, чем на уровне моря. Это связано с двумя конкурирующими физическими эффектами: гравитацией, которая заставляет воздух находиться как можно ближе к земле; и теплосодержание воздуха, которое заставляет молекулы отскакивать друг от друга и расширяться.

Температурный профиль

Температурный профиль атмосферы является результатом взаимодействия излучения и конвекции . Солнечный свет видимого спектра падает на землю и нагревает ее. Затем земля нагревает воздух на поверхности. Если бы радиация была единственным способом передачи тепла от земли к космосу, парниковый эффект газов в атмосфере поддерживал бы температуру земли примерно на уровне 333 К (60 ° C; 140 ° F), а температура экспоненциально снижалась бы с высотой.

Однако когда воздух горячий, он имеет тенденцию расширяться, что снижает его плотность. Таким образом, горячий воздух имеет тенденцию подниматься и передавать тепло вверх. Это процесс конвекции . Конвекция приходит в равновесие, когда воздушный шарик на заданной высоте имеет такую ​​же плотность, как и его окружение. Воздух плохо проводит тепло, поэтому воздушные частицы будут подниматься и опускаться без теплообмена. Это известно как адиабатический процесс , который имеет характерную кривую давление-температура. При понижении давления температура понижается. Скорость снижения температуры с увеличением высоты известна как адиабатический градиент , который составляет примерно 9,8 ° C на километр (или 5,4 ° F на 1000 футов) высоты.

Отметим, что наличие воды в атмосфере усложняет процесс конвекции. Водяной пар содержит скрытую теплоту парообразования . По мере того, как воздух поднимается и охлаждается, он в конечном итоге становится насыщенным и не может удерживать необходимое количество водяного пара. Водяной пар конденсируется (образуя облака ) и выделяет тепло, которое изменяет градиент от сухого адиабатического градиента к влажному адиабатическому градиенту (5,5 ° C на километр или 3 ° F на 1000 футов). В среднем Международная организация гражданской авиации (ИКАО) определяет международную стандартную атмосферу (ISA) с отклонением температуры 6,49 ° C на километр (3,56 ° F на 1000 футов). Фактическая скорость может варьироваться в зависимости от высоты и местоположения.

Наконец, обратите внимание, что только тропосфера (примерно до 11 километров (36 000 футов) над уровнем моря) в атмосфере Земли претерпевает заметную конвекцию; в стратосфере наблюдается небольшая вертикальная конвекция.

Когда возникло понятие «уровень моря»?

После того как человек освоил все уголки земного шара, изучил моря и океаны, начали появляться новые величины и международные стандарты, облегчающие понимание тех или иных явлений. Аналогичная ситуация произошла и с возникновением понятия «уровень моря». В 1875 году главы семнадцати самых влиятельных стран мира собрались в столице Франции для подписания очередной конвенции. Речь шла о принятии международных стандартов, касающихся мер длины, веса, времени, географической широты и пр.

Удивительно, в каждой из стран мира существуют свои собственные горизонтальные ориентиры, что используются как точка, от которой измеряют глубину морей и высоту горных массивов. Примечательно, что разница между такими объектами иногда превышает несколько метров, что лишний раз подтверждает, насколько относительно понятие «уровень моря».

В России и странах постсоветского пространства таким «ориентиром» стал Кронштадтский футшток. Он представляет собой черту на медной доске, расположенную на мосту, который проходит через Обводной канал у берега Финского залива. Черта определяет средний уровень воды в заливе, но ученые настаивают на том, что эти данные давно устарели. Для чистоты эксперимента необходимо измерять уровень воды каждые 19 лет.

Например, в Германии существует своя отметка уровня моря – это черта на церкви Святого Александра, расположенная в городке Валленхорст. Эта отметка имеет непосредственную привязку к уровню воды в Северном море. В Великобритании считают началом отсчета средний уровень вод Ньюлинской гавани. В то же время Северная Ирландия определилась со своей собственной отметкой – это уровень вод Белфаста. Италия ровняется на уровень моря у Генуи, но жители итальянского городка Триест используют в качестве основного мерила уровень воды в городском порту.

Учеными введено в обиход еще одно важное понятие, что неразрывно связано с уровнем моря – «высота морской поверхности». Речь идет о высоте поверхности океанических вод, которая меняется на протяжении суток

На высоту морской поверхности сильное влияние оказывают приливы, неразрывно связанные с Луной и Солнцем.

Разница между самыми высокими горами в мире

Так на сколько одна гора выше другой, спросите вы, и будете правы. Если мерить от центра Земли, то расстояние между ним и вершиной Эвереста составляет 6 382 километра, для Чимборасо этот показатель составляет 6 385 километров. Этого достаточно для того, чтобы перекрыть упомянутую выше разницу. В итоге, самой высокой горой на Земле является именно Чимборасо. Более того, Эверест опустится даже не на второе место, а намного ниже, уступив место более приближенным к экватору горам.

Высота горы формально зависит от положения относительно экватора.

На самом деле, назвать это новостью нельзя, так как некоторые научные издания опубликовали информацию о Чимборасо еще в 2007 году. Но почему же тогда Эверест до сих пор все так любят и почитают, как самую высокую гору в мире? А заодно стремятся к восхождению на него.

Долина, средняя и большая высота

В высокогорьях умеренного пояса очевидно и, следовательно, тривиально, что растительность меняется в зависимости от высоты. Не вдаваясь в подробности характеристик высотных уровней, разделение на три части: низкая (долина), центральная и большая высота , следовательно, в целом понятно. Граница между средней и высокой высотой всех влажных гор — (верхняя) линия деревьев . Общий предел для всех гор во всем мире является результатом соответствующего ограничения на мороз или снег . Термины большая высота и высокий горный уровень (-ы) суммируют от альпийского до нивального уровня высоты.

Модели и названия

Чем дальше друг от друга горы, тем больше различий! По этой причине, помимо установленных орографических терминов (планарный, коллин, монтан, альпийский, нивальный и т. Д.), В зависимости от автора и профессиональной ориентации, особенно для гор за пределами умеренных зон, иногда используются совершенно другие термины или определяется иначе, чем в других моделях .

Хотя высокие уровни гор выше верхней (термической) линии деревьев в определенной степени сопоставимы, существует риск путаницы с другими терминами, если уровень не рассматривается в контексте всей модели. Прежде всего, критикуются использование термина для второго уровня тропических гор (вместо плоского уровня субтропических гор) и два разных определения субальпийского высотного уровня .