Введение
«АСКОН» — крупнейший российский разработчик инженерного программного обеспечения и интегратор в сфере автоматизации проектной и производственной деятельности. Программное обеспечение компании «АСКОН» применяют свыше 7000 промышленных предприятий и проектных организаций в России и за рубежом.
Основная задача, решаемая системой «КОМПАС-Электрик», — автоматизация конструкторских работ, связанных с выпуском документации на электрооборудование объектов производства.
Система «КОМПАС-Электрик V14» выпущена в двух вариантах:
- «КОМПАС-Электрик Express». Это приложение ориентировано на выпуск электрических принципиальных схем и перечней элементов к ним.
- «КОМПАС-Электрик». Это приложение ориентировано на выпуск полного комплекта документов на электрооборудование и комплекта эксплуатационной документации на программируемые логические контроллеры.
Цель автоматизации проектирования в системе «КОМПАС-Электрик» — повышение скорости проектирования и качества выпускаемой документации.
Как удалить вспомогательные точки в КОМПАС одной командой
Вспомогательные точки на насыщенных чертежах, могут затруднять работу с документом и их требуется удалить. Проще всего сделать это командами:
- «Удалить вспомогательные кривые и точки»;
- «Удалить вспомогательную геометрию во всех видах».
Обе команды расположены в разделе «Черчение» главного текстового меню
Команда «Удалить вспомогательные кривые и точки» удаляет вспомогательную геометрию только в текущем виде. Вторая команда позволяет удалить все вспомогательные объекты целиком в документе.
Кроме специальных команд можно использовать и стандартное удаление после выделения рамками или выделением группы объектов с нажатой клавишей Ctrl или Shift.
Также можно выделить все точки по типу, а потом удалить их. Для этого нужно перейти по пути: Главное текстовое меню — Выделить — По свойствам — Точки
Все точки будут выделены, останется только нажать Delete с клавиатуры.
Преимущества использования системы
• Повышается скорость создания и оформления документов проекта — система обладает функциями автоматического формирования большей части документов в проекте.
• Исключение рутинных операций — каждая комплектующая единица проекта вводится только один раз, и при формировании различных документов дальнейшее использование ее данных происходит автоматически.
• Повышение качества выпускаемых предприятием изделий — система обладает рядом элементарных контрольных функций, отсутствующих при ручном проектировании.
• Рост качества оформления документов — все графические обозначения электроаппаратов во всех документах проекта приведены к единому представлению, элементы оформления чертежей полностью соответствуют требованиям ЕСКД.
• Единое информационное пространство предприятия — наличие комплекса CAD/CAM/CAE/PDM-систем компании АСКОН позволяет всем подразделениям предприятия, как конструкторским, так и технологическим, работать в едином информационном пространстве.
Все эти преимущества повышают конкурентоспособность изделий, а соответственно и самого предприятия.
Какие новшества появились нового после выхода первой версии системы.
Система находилась в постоянном, активном развитии и ко второй версии получила следующие новшества:
- Значительно расширилась номенклатура базы данных и библиотеки УГО: в 5 раз (до 4000 типо-исполнений), увеличилась база данных комплектующих изделий, в 3,5 раза (около 350 УГО), выросла библиотека УГО;
- Ранее схемы соединений могли быть выполнены только адресным способом. Теперь появилась возможность в этих схемах показывать трассы прокладки проводов;
- Добавился новый тип документа — тактовая циклограмма (рис. 1);
- Увеличился перечень поддерживаемых СУБД: в первой версии использовалась СУБД InterBase (или ее аналог FireBird), теперь можно также применять MS SQL Server и MS Access. При этом существует возможность быстрого перевода базы данных на любую СУБД непосредственно на предприятии;
- Реализована возможность объединения разных баз данных в одну;
- Появилась возможность добавления нового аппарата в базу данных непосредственно из доку-мента проекта, находящегося на стадии разработки;
- Добавлена долгожданная функция «резиновости» и «затягивания» линий электрической связи;
- Также появилось множество других сервисных функций, повышающих комфортность работы конструктора с системой.
Рис. 1 Тактовая циклограмма работы станка
Основные функции КОМПАС-Электрик
• Добавление и редактирование комплектующих в базе данных; добавление новых УГО в библиотеку и настройка ее структуры.
• Вставка УГО из библиотеки в схему электрическую принципиальную, его обработка и выполнение контрольных функций.
• Построение и редактирование линий электрической связи, электрических шин, групповых линий связи.
• Ручная и автоматическая расстановка маркировки проводов.
• Вставка спецсимволов линий связи (экран, кабель, коаксиальный проводник, скрутка и т.п.), влияющая на выбор типа проводника.
• Функция централизованной корректировки электрических связей в изделии (Сводная таблица, Диалог изменения внешних трасс).
• Автоматическое формирование клеммников по ходу работы над проектом.
Количество функций постоянно увеличивается, причем многие из них появляются по предложению пользователей.
Компоновка панелей
Трехмерная компоновка панелей производится с помощью стандартных функций по работе со сборками КОМПАС-3D. Созданные ранее стандартные детали извлекаются из библиотеки и с помощью механизма сопряжений размещаются на предварительно созданной несущей конструкции (панели, стойке, щите и т.п.).
В случае, если одинаковых элементов много и они расположены в определенном порядке, можно воспользоваться одной из команд создания массивов по сетке , вдоль кривой, по образцу (образцом может служить любой из уже созданных массивов в данном случае массив отверстий в плате).
С крепежными изделиями ситуация еще проще при вставке из стандартной библиотеки крепежа нам достаточно указать отверстие, в котором размещается крепеж, и торцевую поверхность, по которой крепеж будет выровнен. Как уже отмечалось, спецификация в этот момент формируется автоматически.
Сборочный чертеж платы и спецификация на плату
Принципиальная электрическая схема и перечень элементов схемы
Вставка УГО
Позволяет вставить в схему условное графическое обозначение (УГО) аппарата и назначить ему позиционное обозначение, а также выбрать его тип из базы данных комплектующих. При вводе позиционного обозначения система осуществляет несколько проверок (так называемых контролей): запрет ввода русских букв; обязательная завершенность позиционного обозначения цифрой; соответствие буквенного кода, введенного пользователем, тому значению, которое указано в базе данных; запрет на наличие в позиционном обозначении специальных символов. Все перечисленные проверки можно отключить в любой момент времени. УГО может вставляться в схему с любым допустимым углом поворота, что позволяет строить схемы с горизонтальной, вертикальной и смешанной ориентацией цепей. Угол поворота может изменяться и непосредственно в схеме. При повороте УГО положение его текстов автоматически корректируется (рис.4). Каждое текстовое поле, расположенное возле УГО, может быть отображено на схеме либо скрыто. При работе с аппаратами в схемах осуществляется контроль использования функциональных частей изделия. Например, система предупреждает о переполнении контактных групп у аппаратов релейного типа. После назначения типа аппарата из базы данных на УГО возле выводов отображаются реальные номера зажимов, соответствующие той функциональной части аппарата, которую представляет УГО в схеме.
Возле УГО, которые на схеме представляют аппараты разнесенным способом, формируется перекрестная ссылка. Перекрестная ссылка показывает лист и зону, в которых расположены все остальные УГО одного аппарата.
Новшества, появившиеся после выхода первой версии системы
Система находится в постоянном активном развитии, вследствие чего во второй ее версии появились следующие новшества:
• значительно расширилась номенклатура базы данных и библиотеки УГО: в 5 раз (до 4 тыс. типоисполнений) увеличилась база данных комплектующих изделий, в 3,5 раза (около 350 УГО) — библиотека УГО;
• ранее схемы соединений могли быть выполнены только адресным способом, теперь появилась возможность в этих схемах показывать трассы прокладки проводов;
• добавился новый тип документа — тактовая циклограмма (см. рисунок);
• увеличилось количество поддерживаемых СУБД: в первой версии использовалась СУБД InterBase (или ее аналог FireBird), теперь можно также применять MS SQL Server и MS Access. При этом существует возможность быстрого перевода базы данных на любую СУБД непосредственно на предприятии;
• реализована возможность объединения разных баз данных в одну;
• появилась возможность добавления нового аппарата в базу данных непосредственно из документа проекта, находящегося на стадии разработки;
• добавлена долгожданная функция «резиновости» и «затягивания» линий электрической связи;
• также появилось множество других сервисных функций, повышающих комфортность работы конструктора с системой.
Начинаем проектирование в КОМПАС-Электрик
Сегодня неотъемлемой частью комплекса КОМПАС является специализированное приложение для автоматизированного проектирования электрооборудования КОМПАС-Электрик . Оно работает под управлением системы КОМПАС-3D и применяется при разработке любых объектов, в которых для выполнения электрических связей используется проводной монтаж. Это и низковольтные комплектные устройства (НКУ), и системы релейной защиты и автоматики (РЗА), и АСУ технологических процессов, и многое другое. Систему можно применять в проектных институтах, конструкторских бюро и отделах, которые проектируют электроприводы и различное нестандартное оборудование.
По нашему мнению, процесс проектирования электрооборудования «сверху вниз», то есть «от принципиальной электрической схемы», является наиболее правильным. Такой порядок действий позволяет автоматически получать все «нижестоящие» документы: таблицы и схемы соединений, перечни элементов, ведомости покупных изделий, спецификации и другие отчеты. При этом в системе КОМПАС-Электрик можно вести проектирование не только в вышеуказанной последовательности, но и в свободном порядке. Правда, степень автоматизации в таком случае существенно снижается.
Компоновка стандартных элементов на панели с использованием команд создания массивов
Выбор стандартных крепежных элементов из библиотеки
Электрические устройства чаще всего состоят из стандартных элементов, применяемых во множестве изделий. Создание и накопление базы по таким элементам одна из первоочередных задач, поскольку наличие такой базы существенно ускоряет процесс проектирования. Стандартные средства КОМПАС-Электрик и КОМПАС-3D позволяют создавать собственные базы данных (библиотеки компонентов) без использования программирования.
Библиотечные элементы, в качестве которых могут использоваться как отдельные детали, так и сборки, можно делать параметрическими. Параметризация совместно с механизмом работы с переменными дает возможность создавать группы однотипных деталей, различающихся определенными параметрами. При создании библиотеки средствами КОМПАС-3D очень полезно сразу же, непосредственно в файле детали (подсборки), создать соответствующий объект спецификации .
Это несложное действие решает сразу несколько проблем при вставке компонента в сборку не надо помнить, включили мы его в спецификацию или нет, а также то, сколько раз этот компонент использован (при вставке других точно таких же изделий КОМПАС-3D просто просуммирует их количество). Заполнение баз данных в приложении КОМПАС-Электрик ведется с помощью специальных помощников Мастеров сохранения.
Полученная трехмерная модель платы (и панель с командами конвертора)
Размещение печатной платы в устройстве
Ход выполнения проекта электротехнической части изделия оптимизируется с помощью специального Менеджера проектов . При этом в состав проекта можно включать не только документы, созданные непосредственно в КОМПАС-Электрик, но и любые другие документы КОМПАС-3D. По завершении проектирования всех схем и таблиц, а также предварительного размещения компонентов на рабочих поверхностях будущего изделия можно приступить к трехмерной компоновке.
После разработки изготовление
Выше мы рассказали о проектировании корпуса нашего изделия с помощью модуля Гибка. Получение развертки корпуса не самоцель. Одной из серьезных технологических задач, решаемых на производстве, является раскрой листов металла на заготовки для последующей гибки. Также очень важна задача разработки управляющих программ для систем ЧПУ раскройных станков. Здесь можно с успехом использовать Интех-РАСКРОЙ W/L комплекс программ для автоматизированного проектирования карт раскроя, составления управляющих программ и формирования технологической документации. Благодаря этой системе можно повысить коэффициент использования имеющегося на складах листового металла до 95%, поскольку обеспечиваются оптимальное размещение деталей и оптимальные траектории движения инструмента, создаются оптимальные УП для обработки на лазерном, плазменном, кислородном и механическом оборудовании.
Назначение системы.
Напомним, что система предназначена для автоматизации проектирования и для выпуска комплекта до-кументов (схем и отчетов к ним) на электрооборудование объектов производства. В качестве объектов производства могут быть любые объекты, в которых для выполнения электрических связей используется проводной монтаж. Это и низковольтные комплектные устройства (НКУ), и системы релейной защиты и автоматики (РЗА), и АСУ технологических процессов, и многое другое. Систему можно применять в институтах, конструкторских бюро и отделах, которые проектируют электроприводы, нестандартное оборудование.
Построение соединителей и вставка на них специальных символов
В системе соединители представлены тремя видами: линиями электрической связи; групповыми линиями связи и электрическими шинами. Группа соединителей, ограниченная выводами УГО, объединяется в потенциальный узел. Для потенциального узла может быть назначен номер провода (маркировка) и функция цепи, к которой он относится. Перечень функций цепей для каждого нового проекта может быть уникален — это и силовые, и информационные, и управляющие цепи, и любые иные. Для функции цепи может быть назначен тип провода и тип клеммы, что позволяет автоматически их назначать конкретному соединению в монтажно-коммутационных схемах. На линии электрической связи могут быть вставлены следующие дополнительные символы (рис.5).
- Клемма — проходная, силовая, контрольная. Символ клеммы не разрывает потенциальный узел. Символы клемм также могут расставляться автоматически, после завершения процедуры формирования клеммника.
- Перемычка, предназначенная для разрыва потенциального узла.
- Обозначение коаксиального кабеля.
- Экранирование отдельных или группы проводов. К экрану можно подключать линию электрической связи.
- Объединение отдельных проводов в кабель.
- Скрутка двух и более проводов.
- Заземление.
- Соединение с корпусом.
- Обрыв соединителя.
Последние три символа позволяют объединить графически несвязанные соединители в один потенциальный узел, а также соединить линиями связи элементы, находящиеся на разных листах принципиальной схемы.
Линии электрической связи обладают ассоциативной связью с «зажимами» электрических аппаратов, т.е. закрепляются в точках подключения к УГО и не отрываются от них при его перемещении. Кроме того, линии связей автоматически разрываются при пересечении выводов УГО и «затягиваются» при его удалении.
Если в схеме возникает T-образное пересечение, то в этих местах автоматически вставляется точка связи. Для X-образных пересечений появление точки связи зависит от настроек системы.
Маркировка (номера проводов) может расставляться как в ручном, так и в автоматическом режиме. Но в любом случае осуществляется контроль дублирования ее значений.
Рис.5.
Принципы проектирования однолинейной схемы электроснабжения
При разработке и оформлении исполнительной документации необходимо выполнять требования к подобным документам, отражённым в нормативной литературе, а также ПТЭЭП и ПУЭ («Правила устройства электроустановок»).
Что должна включать однолинейная схема электроснабжения
На однолинейных схемах электроснабжения должна быть отражена следующая информация, а именно:
граница зоны ответственности организации, поставляющей электрическую энергию, и её потребителя;
Отображение зоны балансовой принадлежности на схеме электроснабжения объекта
вводно-распределительные устройства (ВРУ) или ГРЩ, а также трансформаторные подстанции, стоящие на балансе потребителя с отображением устройств АВР (автоматическое включение резерва), если таковые имеются;
- приборы учёта электрической энергии с указанием коэффициента трансформации трансформаторов тока при использовании счётчиков, работающих на вторичном токе в 5Ампер;
- информация обо всех имеющихся на объекте распределительных шкафах как силового оборудования, так и системы освещения;
- длины магистральных электрических линий с указанием марки кабелей, проводов и способов их прокладки;
- технические параметры и состояние в рабочем положении всех устройств автоматического отключения, к которым относятся автоматические выключатели, УЗО и предохранители;
- данные обо всех электрических нагрузках, подключаемых к отображаемому на схеме оборудованию, с указанием их мощности, тока и cos ϕ.
Вариант выполнения расчётной однолинейной схемы электроснабжения административного здания
Читать также: Магнитный угольник для сварки своими руками
Этапы проектирования
Наличие однолинейной схемы электроснабжения является обязательным условием для получения разрешения на подключение объекта строительства к сетям электроснабжающей организации, поэтому прежде, чем приступать к её разработке, необходимо запросить технические условия.
В связи с этим все работы по проектированию схемы электроснабжения можно разбить на несколько этапов:
- Запрос и получение технических условий;
- Разработка однолинейной схемы электроснабжения на основании полученных документов;
- Согласование разработанной документации в организации, выдавшей технические условия.
Вариант оформления технических условий на электроснабжение
Правила оформления, требования ГОСТов
При оформлении однолинейной схемы электроснабжения необходимо соблюдать требования ГОСТов, регламентирующих этот процесс, а именно:
- ГОСТ 2.709-89 «Единая система конструкторской документации (ЕСКД). Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах»;
- ГОСТ 2.755-87 «Единая система конструкторской документации (ЕСКД). Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения»;
- ГОСТ 2.721-74 «Единая система конструкторской документации (ЕСКД). Обозначения условные графические в схемах. Обозначения общего применения (с Изменениями №№ 1, 2, 3, 4)»;
- ГОСТ 2.710-81 «Единая система конструкторской документации (ЕСКД). Обозначения буквенно-цифровые в электрических схемах (с Изменением № 1)».
Вариант оформления однолинейной схемы электроснабжения в соответствии с данными ГОСТами приведён наследующем рисунке.
Расчётная однолинейная схема электроснабжения жилого дома
Условные обозначения, используемые при составлении однолинейных схем
Все элементы системы электроснабжения отображаются на схеме в виде графических изображений, которые регламентированы нормативной литературой, указанной в предыдущем разделе статьи. Электрические коробки и шкафы различного назначения изображаются следующим образом.
Электроустановочные изделия (розетки и выключатели), в зависимости от конструкции и типа исполнения, отображаются вот так
Приборы электрического освещения изображаются следующим образом
Силовые трансформаторы и трансформаторы тока изображаются так
Электроизмерительные приборы имеют следующий вид на схемах электроснабжения, в соответствии с ГОСТ
Пересечение электрических линий и места соединения электропроводки, а также заземление выглядят следующим образом
Коммутационные устройства (автоматические выключатели и пускатели, короткозамыкатели и отделители, а также прочие аппараты) изображаются так
Для того чтобы узнать, как правильно оформить исполнительную документацию, необходимо изучить все требования ГОСТов или воспользоваться специальной компьютерной программой, которая учтёт все эти требования в автоматическом режиме при её использовании
Пример работы с КОМПАС3D
Давайте рассмотрим работу с новой деталью. На начальном экране кликаем по пункту «Деталь». Перед нами открылся новый проект с системой координат, на которой мы и будем строить нашу деталь.
Что может быть проще чем создать гантелью? Именно этот спортивный снаряд мы и будем делать. Приступаем.
- Для начала нужно выделить левым кликом плоскость координат, на которой начнется построение, у нас это будет зеленая плоскость или Y. Как только мы это сделаем модель повернется к нам «лицом». Также можно просто выбрать инструмент, с которым мы будем работать и нажать на плоскость построения.
- Кликаем по центру координат и растягиваем нашу будущую окружность, когда контур будет доведен до нужного размера, снова делаем левый клик.
- Теперь нужно придать плоскому кругу объема. Кликаем по элементу выдавливания, затем по контуру круга.
- Теперь, если мы повернем систему координат, можно будет увидеть, что наша заготовка получила объем. Причем размер детали указан на схеме.
- Далее, нужно сделать так, чтобы наша заготовка стала гораздо длиннее и была похожа на гантель. Для этого следует изменить числовое значение, которое мы обозначили на скриншоте и нажать Enter.
- Перед вами ручка гантели, но также нужно сделать и блины. Мы покажем один из них, второй следует создавать по аналогии. Итак, центрируем нашу заготовку кликом по средней точке оси координат.
- Выбираем инструмент «Окружность» и кликаем по торцу нашей ручки.
- Кликаем по центру круга и растягиваем его до нужной величины. Можно задать точное числовое значение, но мы будем делать деталь на глаз. Ведь это просто гантель.
- В результате у нас получился чертеж будущего блина. Точно так же как, как мы это делали с ручкой, его нужно растянуть. Кликаем по инструменту выдавливания и задаем размер (мы выбрали 100).
- Чтобы завершить операцию жмем зеленую птичку, отмеченную на скриншоте.
- Повторяем ту же операцию для второго блина и видим, что перед нами предстала гантель.
Надеемся наши уроки вам помогли, теперь можно смело переходить к скачиванию программы.
Проектирование несущего корпуса
Проектирование корпусных деталей целесообразно осуществлять в контексте сборки, привязываясь к заранее размещенным в сборке компонентам. Очень часто корпуса многих электрических устройств представляют собой деталь, согнутую из листа (из стали или алюминиевых сплавов): для ее создания как нельзя лучше подходит модуль работы с листовым материалом (подробно новый модуль был описан в журнале «САПР и графика» № 7’2004).
Напомним, что создание листовой детали начинается с построения листового тела на основе эскиза с заданием толщины и коэффициента нейтрального слоя. К созданному таким образом телу затем можно добавлять другие элементы листового тела (сгиб, сгиб по линии, пластину, отверстия, замыкания углов) или обычные формообразующие элементы (в том числе фаски, скругления), команду вычитания объектов. Не забудем и о возможности показа листовой детали в развернутом виде. При создании чертежа можно одновременно задавать как развернутые, так и неразвернутые виды детали.
То, что получилось в итоге
Окно системы Интех-РАСКРОЙ W/L