Тонкие линзы

Содержание

Сюжетные реалии

Дискуссии о том, является ли сетка первой или второй фокальной плоскости лучшим вариантом, не редкость. То, как вы собираетесь использовать свою винтовку, может быть решающим фактором в вашем выборе.

В прошлом сетки FFP были обнаружены только в европейских прицелах, а система SFP считалась стандартом для американской или азиатской оптики. Когда европейские оптические компании начали выходить на американский рынок, они начали использовать сетку SFP. Интересно отметить, что по мере увеличения спроса на дальнобойные тактические прицелы прицел FFP стал очень желательным в Штатах.

По словам Кейлена Войчика, бывшего снайпера морской пехоты и директора компании Precision Rifle Magpul Core, «прицельные сетки первого или переднего фокуса для тактической стрельбы / стрельбы на большие расстояния являются лучшим выбором, потому что растяжения сетки остаются неизменными независимо от увеличения, Преимуществами этого являются оценки дальности с использованием формулы отношения mil, использование сетки для удержаний и задержек в сценариях с несколькими целями, а также применение поправок на ветер с использованием сетки. Все эти ситуации становятся намного проще с сеткой первой фокальной плоскости ».

Основное различие между этими двумя стилями действительно очень просто. Если ваша прицельная сетка представляет собой милую точку или какой-либо другой тип, который предлагает баллистические поправки, и он помещен в SFP, он обеспечит правильную баллистическую коррекцию или преимущества дальности, только если оптический прицел настроен на максимальное значение или одно предопределенное увеличение. Во многих случаях это не проблема, потому что если вы стреляете на расстоянии, которое требует баллистической коррекции, очень вероятно, что прицел будет настроен на максимальное увеличение.

СВЯЗАННАЯ ИСТОРИЯ: 5 областей AR с быстрым нацеливанием, о которых вам нужно знать

Однако иногда вы можете не захотеть снимать с максимальным увеличением. Может быть, вам нужно преимущество большего поля зрения или вам нужно максимизировать яркость в условиях слабой освещенности; меньшее увеличение может помочь с обоими. Если вы повернете свой 20-кратный прицел на 10-кратный, растяжки для всех дополнительных точек прицеливания ниже центра сетки увеличатся в два раза. Это означает, что точка 1 мил станет точкой 2 мил. Изменение увеличения от 20X до 10X не так сложно вычислить в полевых условиях, но переход от 20X к 13, 5X создает математическую задачу, которую вы, возможно, не сможете легко решить в своей голове.

Преимущество сетки FFP заключается в том, что растяжения остаются неизменными независимо от увеличения; точка 1 мил — это точка 1 мил, независимо от того, на каком увеличении находится прицел. Это означает, что вы можете вносить баллистические поправки для траектории или ветра точно так же, не беспокоясь об увеличении.

Это может вызвать у вас удивление, почему кому-то понадобится прицел с сеткой, размещенной в SFP. Ну, есть веская причина. Видите ли, сетка, помещенная во вторую фокальную плоскость, никогда не меняет размер. Это всегда кажется одинаковым, даже в прицел, способный увеличить видимый размер цели в шесть раз (с 4X до 24X). Другими словами, сетка всегда выглядит одинаково. Это может показаться не таким уж большим делом, но при использовании сетки FFP пропорции сетки совпадают с целью. Это означает, что при очень малом увеличении прицельная сетка будет выглядеть очень маленькой. В некоторых случаях они настолько малы — в зависимости от сетки — вы не можете разглядеть дополнительные точки прицеливания достаточно хорошо, чтобы использовать их.

Точно так же, когда прицел с прицельной сеткой FFP установлен на максимальное увеличение, самая нижняя дополнительная точка прицеливания — точка мил или точка MOA — ниже центра прицельной сетки может появиться в нижней части поля зрения. Некоторые стрелки находят это сбивающим с толку.

Виды оптических прицелов

1. Оптический прицел с постоянной кратностью.

В 1880-м году был создан современный тип оптического прицела с постоянной кратностью, то есть по настоящий момент внутреннее строение и расположение системы линз у прицела с постоянной кратностью, такое же как и более чем 220 лет назад. Такие прицелы более дешёвые в производстве, очень надёжны, поскольку не имеют подвижных деталей. Отличаются большим сроком службы. Линзы дают более чёткое, фиксированное изображение. Отличаются относительно недорогой стоимостью. Из недостатков следует заметить, что оптика с постоянной кратностью узконаправленного действия, то есть предназначены для стрельбы с одной, применимой именно для каждой оптики дистанции. Дистанция же зависит от кратности. Так, наиболее комфортная и часто применяемая, это оптические прицелы с кратностью 3х, 6х или 9х, свыше, например 10х или 20х для охоты малопригодны и скорее предназначены для военного оружия.

2. Оптический прицел с переменной кратностью (панкратический).

Первая оптика с переменной кратностью была изобретена в 1949-м году Калесом Фредериком. В 1972-м году компания “Калес” значительно усовершенствовала оптические прицельные приспособления с переменной кратностью, запатентовав многослойную просветление самой оптики, то есть систему линз, при которых светосила составляет не менее 26 единиц, а угол обзора при этом, может изменяться от 26 градусов по горизонту при близком увеличении, до 2,5 градусов на максимально дальнем увеличении. Оптический прицел с переменной оптикой более дорогой, чем простая оптика, поскольку у него более сложное внутреннее устройство, система линз подвижна, за счет этого увеличивается или уменьшается кратность, то есть увеличение до объекта. Ввиду этого, такой прицел менее надёжен, поскольку отдача после выстрела негативно влияет на сами линзы и их взаимное положение. Панкратические прицелы, не рекомендуется устанавливать оптические прицелы на гладкоствольные ружья, поскольку у них самая мощная отдача. Для установки отлично подходят автоматические нарезные карабины. Если есть выбор приобрести недорогой прицел с переменной кратностью или с постоянной, то лучше выбрать с постоянной, поскольку недорогие прицелы с переменной кратностью крайне ненадёжны.

Устройство оптического прицела

Объектив

Объектив оптического прицела представляет собой систему из двух или более линз. Наружная поверхность входной линзы объектива чаще всего имеет просветляющее напыление, которое препятствует обратному отражению света и увеличивает светосилу прицела. Цель объектива собрать как можно больше света и передать его дальше.

Три параметра характеризуют качество объектива оптического прицела: чем больше диаметр объектива, чем лучше качество стекла линз и чем лучше качество просветляющего покрытия линз, тем больше светосила оптического прицела, тем ярче у него картинка, тем лучше видно в прицел в сумерках, ночью и при недостаточности дневного освещения.

На некоторых прицелах на объектив надевается светозащитная бленда или антибликовая насадка, которая бывает необходима для предотвращения попадания и затем отражения от линз объектива боковых лучей. Бленда позволяет замаскировать местоположение стрелка и улучшает четкость изображения при ярком солнце.

Оборачивающая система

Объектив оптического прицела выдает перевернутое изображение, оборачивающая система линз, которая формирует на выходе правильное, не перевернутое изображение. В качественном прицеле используется более 10 собирающих и рассеивающих линз, которые объединены в группы.

Оборачивающая система одна из таких групп

Важно чтобы линзы оптического прицела имели надежную фиксацию в корпусе прицела и выдерживали отдачу оружия любого калибра

Прицельная сетка

Прицельная сетка предназначена для наведения оружия с прицелом на цель. Прицельная сетка может располагаться в одной из фокальных плоскостей прицела, объективной или окулярной. Прицельная сетка может иметь разный рисунок, чаще всего она имеет форму креста или полукреста, но существуют и более сложные типы. Некоторые типы прицельных сеток устроены так, что позволяют рассчитать с большей или меньшей точностью, расстояние до цели, по ее известным размерам.

Подсветка прицельной сетки

Прицельная сетка могут быть плохо различима в условиях плохой освещенности, ночью, в сумерках, на фоне темной растительности. Для того чтобы решить эту проблему, в прицел встраивают подсветку прицельной сетки.

Механизм ввода вертикальных и горизонтальных поправок

Механизм ввода вертикальных и горизонтальных поправок нужен для пристрелки оружия и совмещения прицельной сетки с точкой попадания. На прицеле имеются два барабанчика ввода поправок: один перемещает прицельную сетку по вертикали, второй по горизонтали. На барабанчиках нанесена шкала, а вращение барабанчиков происходит со щелчками. Величина угла на который смещается прицельная сетка за один щелчок указано в технических характеристиках прицела.

Корпус прицела

Корпуса оптических прицелов изготавливаются из легких, но при этом очень прочных сплавов. Корпус связывает все узлы прицела в единую конструкцию.

Корпус защищает внутренние части прицела от попадания влаги и пыли, а также защищает их от мощных ударных нагрузок, возникающих при стрельбе.

Окуляр

Окуляр оптического прицела представляет собой группу из нескольких линз. Именно окуляр оптического прицела отвечает за увеличение изображения цели и прицельной сетки. Фокусное расстояние оптических прицелов, предназначенных для установки на винтовки и карабины, обычно составляет 50-70 мм. Это именно то расстояние, с которого нужно смотреть в прицел, для того чтобы изображение в прицеле было четкое и не затемненное по краям. Для подстройки прицела под индивидуальные особенности зрения стрелка на окуляре имеется специальное вращающееся диоптрийное кольцо.

На некоторых прицелах имеется специальный резиновый наглазник, надеваемый на окуляр прицела, который нужен для того, чтобы зафиксировать глаз в одном положении у прицела, а также избежать бликов и засветок на линзе окуляра.

Прицельные сетки[ | ]

Различные виды прицельных сеток Прицельная сетка представляет собой либо металлический трафарет (в простейшем случае — две пересекающиеся проволочки), либо стекло с нанесённым на него рисунком. Прицельная сетка размещается либо в первой (находится в середине прицела, изображение в ней перевёрнутое), либо во второй (находится в районе окуляра, изображение прямое) фокальной плоскости прицела.

Для наводки оружия на цель необходимо совместить изображение цели с изображением определённой части прицельной сетки (это может быть пенёк, перекрестье, уголок и т. д.). При пристрелке специальными маховичками перемещают сетку, совмещая её со средней точкой попадания. Существуют различные прицельные сетки, удобные в различных ситуациях:

Сетка «крест»

Собирательный образ прицельной сетки «крест» Позволяет с высокой точностью навести оружие на небольшую и/или удалённую неподвижную цель. Зная угловое расстояние от перекрестья до утолщения нитей, можно оценить угловые размеры цели.

Сетка «пенёк»

Прицельная сетка «пенёк» Позволяет быстро наводить оружие на цель. Зная промежуток между боковыми линиями, можно оценить угловые размеры цели.

Сетка «ПСО-1»

Прицельная сетка ПСО-1. 1 — шкала боковых поправок; 2 — основной угольник для стрельбы до 1000 м; 3 — дополнительные угольники; 4 — дальномерная шкала Впервые была применена на советском оптическом прицеле ПСО-1, сейчас применяется на многих прицелах, в основном производства СНГ.

Сетка позволяет с высокой точностью навести оружие на небольшую и/или удалённую неподвижную цель и точно определить её угловые размеры. Имеет дополнительную дальнометрическую шкалу, которая позволяет быстро определить расстояние до стоящего в полный рост человека 1,7 м (есть версии, рассчитанные на иную высоту цели — 1,8 м). Дополнительные прицельные уголки позволяют стрелять на различные расстояния, не перенастраивая прицел.

Одно деление шкалы равно приблизительно 1/1000 радиана или просто одной «тысячной». Расстояние до предмета в единицах длины равняется его размеру в единицах длины, умноженному на 1000 и делённому на его угловой размер в тысячных. Например, если предмет имеет ширину 0,7 м и угловую ширину 4 тысячных, то расстояние до него 0,7⋅1000/4 = 175 м.

Сетка «Mil-Dot»

Собирательный образ прицельной сетки «Mil-Dot» Такая сетка также позволяет с высокой точностью навести оружие на небольшую и/или удалённую неподвижную цель и точно определить расстояние до цели. Угловое расстояние между точками на сетке — 1 мил. Угловые размеры самих точек, как правило, 0,25 мила, а угловое расстояние между краями соседних точек — 0,75 мила.

Фокальный затвор с вращающимся барабаном

Вид сзади панорамной камеры Widelux F7 изнутри, где щелевой затвор проходит мимо пленки

Вид спереди Widelux с вращающимся цилиндром объектива

Вращающийся барабан представляет собой необычный затвор FP, который использовался в нескольких специализированных панорамных камерах, таких как Panon Widelux (1959, Япония) и KMZ Horizont (1968, Советский Союз). Вместо того, чтобы использовать объектив с очень коротким фокусным расстоянием ( широкоугольный ) для достижения сверхширокого поля зрения, эти камеры имеют объектив средней ширины, заключенный в барабан с задней вертикальной щелью. Поскольку весь барабан горизонтально поворачивается к задней узловой точке объектива, прорезь вытирает сверхширокоформатное изображение на пленку, расположенную напротив изогнутой фокальной плоскости. Widelux создавал изображение шириной 140 ° в кадре 24 × 59 мм на пленке 135 с объективом Lux 26 мм f / 2,8 и контролируемой выдержкой путем изменения скорости вращения при фиксированной ширине щели.

В камерах Kodak Cirkut (1907, США) и Globus Globuscope (1981, США) вся камера и объектив вращались, когда пленка протягивалась мимо щели в противоположном направлении. Globuscope создавал изображение с углом обзора 360 ° в кадре 24 × 160 мм на пленке 135 мм с линзой 25 мм и имел регулируемую ширину щели с постоянной скоростью вращения.

Вращающиеся затворы FP создают изображения с необычным искажением, когда центр изображения кажется выпуклым в сторону зрителя, а периферия кажется изогнутой, потому что поле зрения объектива изменяется при его повороте. Это искажение исчезнет, ​​если фотография будет установлена ​​на опоре с изогнутой по кругу опорой и просматривается глазом в центре. Вращающиеся ставни также должны плавно вращаться; в противном случае неравномерная экспозиция приведет к некрасивым вертикальным полосам на изображении. Поскольку вращение может занять несколько секунд, независимо от выдержки, камеру следует установить на штатив. По той же причине нельзя использовать вспышку с этими фотоаппаратами.

Эти камеры часто используются для фотографирования больших групп людей (например, «школьная» фотография). Для этого объекты располагаются укороченным полукругом с камерой в центре таким образом, чтобы все объекты находились на одинаковом расстоянии от камеры и смотрели в нее. После того, как экспозиция сделана и обработана, на панорамном снимке все будут расположены по прямой линии и смотрят в одном направлении. Искажение, присутствующее на заднем плане, выдает технику.

Поворотный фокальный затвор

Помимо горизонтальных жалюзи Leica и вертикальных жалюзи Square FP, существуют и другие типы жалюзи FP. Наиболее заметным является поворотный или секторный затвор FP. Вращающийся диск затвора часто встречается в камерах фильма кино, но редко встречается в камерах. Они вращают круглую металлическую пластину с секторным вырезом перед пленкой. Теоретически поворотные заслонки могут управлять своей скоростью, сужая или расширяя вырез в секторе (используя две перекрывающиеся пластины и изменяя перекрытие) и / или вращая пластину быстрее или медленнее. Однако для простоты большинство поворотных затворов фотоаппаратов имеют фиксированные вырезы и меняют скорость вращения. Olympus Pen F и ручка FT (1963 и 1966, как из Японии) половин кадра 35 мм зеркалки сплели полукруглую титановую пластину до 1/500 с.

Полукруглые поворотные заслонки также обладают преимуществом неограниченной скорости X-синхронизации, но все поворотные заслонки FP имеют недостаток в виде большого объема, необходимого для вращения пластин. Univex ртуть (1938, США) половина кадра 35 мм камеры была очень большой купол , выступающим из верхней части основного корпуса , чтобы разместить его 1/1000 сек поворотного затвора. Они также производят очень необычные искажения на очень высокой скорости из-за угловой развертки вытеснения экспозиции. Объем можно уменьшить, заменив пластину шкивами с лезвиями, но тогда поворотный затвор FP по существу становится затвором FP ​​с обычным лезвием.

Разные миссии

Большинство стрелков с большой дальности — особенно те, кто летает на корабле в бою — предпочитают прицельные сетки первого фокуса. Вот почему Nightforce использует этот стиль сетки в своем ультрасовременном прицеле BEAST.

Какая система лучше? Ни на самом деле. Оба позволяют применять баллистические поправки на большом расстоянии, и оба надежны и долговечны. Основное отличие заключается не в том, как они работают, а в том, как они будут использоваться. Если вы стреляете по мишеням и будете стрелять только на дальние цели по стальным мишеням или, возможно, по прериям, SFP должен служить вам превосходно. С другой стороны, если вы работаете в ситуациях на поле битвы, когда вам, возможно, придется делать выстрелы с очень длинных и очень коротких дистанций, вам никогда не придется беспокоиться о том, какова мощность вашего прицела с FFP. Вот почему Nightforce выбрал FFP для своего прицела BEAST, который был специально разработан с учетом военных действий с учетом боевых действий.

СВЯЗАННАЯ ИСТОРИЯ: 10 советов и фактов, которые следует учитывать при выборе устройства ночного видения

Также учтите, что при использовании оптики с большим увеличением нередко уменьшать увеличение для уменьшения видимых тепловых волн, которые могут генерироваться из горячего цилиндра. Сделайте это с прицелом, в котором есть прицельная сетка SFP, и вдруг ваша прицельная сетка не работает для исправления. С сеткой FFP это не имеет значения.

Инструктор по стрельбе на дальнем расстоянии от Gunsite, Майк Мур, который также управляет Tac Drivers, службой оружейных мастерских в Gunsite, сказал мне: «Для меня, чтобы я мог различать прицел с сеткой в ​​первой фокальной плоскости, должен быть как минимум 6X измеренные приращения на сетке. В таком случае я бы выбрал SFP для любой мощности ниже 4.5X. Если я так близко, что это работает, мне, вероятно, не нужна способность измерять расстояние с помощью сетки. С увеличением между 4, 5X и 8, 5X, это увеличение между сетками FFP и SFP. При большем увеличении я бы выбрал сетку FFP. В то же время я не вижу никакой пользы для сетки FFP, если эта сетка не позволяет мне что-то измерить ».

Для меня, если я использую оптический прицел с 10-кратным увеличением или меньше, вариант SFP подойдет. При увеличении более чем в 10 раз я предпочитаю сетку, расположенную в FFP. Вы можете увидеть вещи совсем по-другому. Опыт за вашей винтовкой, с различными прицелами и на стрельбе, поможет вам определить ваш лучший вариант.

Эта статья была первоначально опубликована в «Тактическом оружии» февраль / март 2017 года. Чтобы заказать копию, посетите веб-сайт diverorgroupstore.com.

Двуставные ставни

Традиционный тип затвора в фокальной плоскости в 35-миллиметровых камерах, впервые разработанный Leitz для использования в своих камерах Leica , использует две шторки затвора, сделанные из непрозрачной прорезиненной ткани, которые проходят горизонтально через плоскость пленки. Для более длинных выдержек первая шторка открывается (обычно) справа налево, а по прошествии необходимого времени при открытой шторке вторая шторка закрывает диафрагму в том же направлении. Когда затвор снова взводится, шторки возвращаются в исходное положение и готовы к открытию.

Фокальный затвор, низкая скорость

Затвор в фокальной плоскости на низкой скорости

Рис. 1. Черный прямоугольник представляет собой апертуру кадра, через которую выполняется экспонирование. В настоящее время она закрыта первой шторкой, показанной красным. Вторая шторка, показанная зеленым цветом, находится справа.

Рис. 2: Первая шторка затвора полностью сдвигается влево, позволяя произвести экспозицию. На этом этапе происходит срабатывание вспышки, если она прикреплена и готова к этому.

Рисунок 3: После требуемой экспозиции вторая шторка затвора перемещается влево, чтобы закрыть апертуру кадра. При повторном взведении затвора шторки затвора отводятся обратно на правую сторону, готовые к следующей экспозиции.

Это только графическое представление; реальные механизмы намного сложнее. Например, занавеси на самом деле катятся на катушках по обе стороны от проема рамы, чтобы использовать как можно меньше места.

Более быстрая выдержка достигается за счет закрывания второй шторки до полного открытия первой; в результате получается вертикальная щель, которая проходит горизонтально по пленке. Для более коротких выдержек просто требуется более узкая щель, поскольку скорость движения шторок обычно не меняется.

Фокальный затвор, высокая скорость

Фокальный затвор на высокой скорости

Рис. 1. Черный прямоугольник представляет собой апертуру кадра, через которую выполняется экспонирование. В настоящее время она закрыта первой шторкой, показанной красным. Вторая шторка, показанная зеленым цветом, находится справа.

Рисунок 2: Первая шторка затвора начинает двигаться влево, позволяя произвести экспозицию. Поскольку для экспозиции требуется очень короткая выдержка, вторая шторка начинает перемещаться на заданном расстоянии от первой.

Рис. 3. Первая шторка затвора продолжает движение через апертуру кадра, а затем вторая шторка. Было бы бессмысленно использовать электронную вспышку с такой выдержкой, поскольку кратковременная вспышка будет освещать только очень небольшую часть кадра, так как остальная часть закрывается либо первой, либо второй шторкой затвора.

Рис. 4. Первая шторка завершает движение, за ней следует вторая шторка, которая теперь полностью закрывает проем рамы. Когда затвор снова взведен, обе шторки затвора отводятся обратно на правую сторону, готовые к следующей экспозиции.

Моделирование оптических систем как математические преобразования

В геометрической оптике для каждого луча, входящего в оптическую систему, выходит единственный уникальный луч. С математической точки зрения, оптическая система выполняет преобразование, которое отображает луч каждого объекта на луч изображения. Считается, что объектный луч и связанный с ним луч изображения сопряжены друг с другом. Этот термин также применяется к соответствующим парам точек и плоскостей объекта и изображения. Объект и изображение лучи и точки считаются в двух различных оптических пространствах , объект космических и космических изображений ; также могут использоваться дополнительные промежуточные оптические пространства.

Вращательно-симметричные оптические системы; Оптическая ось, осевые точки и меридиональные плоскости

Оптическая система является осесимметричной, если ее свойства изображения не изменяются при любом вращении вокруг некоторой оси. Эта (уникальная) ось вращательной симметрии является оптической осью системы. Оптические системы можно складывать с помощью плоских зеркал; система по-прежнему считается осесимметричной, если она обладает вращательной симметрией в развернутом виде. Любая точка на оптической оси (в любом пространстве) является осевой точкой .

Вращательная симметрия значительно упрощает анализ оптических систем, которые в противном случае необходимо анализировать в трех измерениях. Вращательная симметрия позволяет анализировать систему, рассматривая только лучи, ограниченные одной поперечной плоскостью, содержащей оптическую ось. Такая плоскость называется меридиональной ; это поперечное сечение системы.

Идеальная осесимметричная оптическая система визуализации

Идеал , осесимметричной, оптическая система формирования изображений должна отвечать трем критериям:

  1. Все лучи, «исходящие» из любой точки объекта, сходятся в одну точку изображения (изображение является стигматическим ).
  2. Плоскости объекта, перпендикулярные оптической оси, сопряжены с плоскостями изображения, перпендикулярными оси.
  3. Изображение объекта, ограниченного плоскостью, перпендикулярной оси, геометрически похоже на объект.

В некоторых оптических системах визуализация стигматична для одной или, возможно, нескольких точек объекта, но чтобы быть идеальной системой, визуализация должна быть стигматичной для каждой точки объекта.

В отличие от лучей в математике , оптические лучи простираются до бесконечности в обоих направлениях. Лучи реальны, когда они находятся в той части оптической системы, к которой они применяются, и виртуальны в другом месте. Например, объектные лучи реальны на объектной стороне оптической системы. При стигматическом отображении луч объекта, пересекающий любую конкретную точку в пространстве объекта, должен быть сопряжен с лучом изображения, пересекающим сопряженную точку в пространстве изображения. Следствием этого является то, что каждая точка на луче объекта сопряжена с некоторой точкой на луче сопряженного изображения.

Геометрическое подобие подразумевает, что изображение представляет собой масштабную модель объекта. Ограничений по ориентации изображения нет. Изображение может быть перевернуто или иным образом повернуто по отношению к объекту.

Фокальные и фокальные системы, фокальные точки

В афокальных системах луч объекта, параллельный оптической оси, сопряжен с лучом изображения, параллельным оптической оси. Такие системы не имеют координационные центры (следовательно , афокальные ) , а также не хватает основных и узловых точек. Система является фокальной, если луч объекта, параллельный оси, сопряжен с лучом изображения, пересекающим оптическую ось. Пересечение луча изображения с оптической осью является фокусной точкой F ‘в пространстве изображения. Фокальные системы также имеют осевую точку F объекта, так что любой луч, проходящий через F, сопряжен с лучом изображения, параллельным оптической оси. F — объектный центр системы.

Трансформация

Преобразование между пространством объекта и пространством изображения полностью определяется кардинальными точками системы, и эти точки могут использоваться для сопоставления любой точки объекта с точкой сопряженного изображения.